5,732 research outputs found

    Stochastic Hydrodynamic Synchronization in Rotating Energy Landscapes

    Full text link
    Hydrodynamic synchronization provides a general mechanism for the spontaneous emergence of coherent beating states in independently driven mesoscopic oscillators. A complete physical picture of those phenomena is of definite importance to the understanding of biological cooperative motions of cilia and flagella. Moreover, it can potentially suggest novel routes to exploit synchronization in technological applications of soft matter. We demonstrate that driving colloidal particles in rotating energy landscapes results in a strong tendency towards synchronization, favouring states where all beads rotate in phase. The resulting dynamics can be described in terms of activated jumps with transition rates that are strongly affected by hydrodynamics leading to an increased probability and lifetime of the synchronous states. Using holographic optical tweezers we quantitatively verify our predictions in a variety of spatial configurations of rotors.Comment: Copyright (2013) by the American Physical Societ

    Motility fractionation of bacteria by centrifugation

    Full text link
    Centrifugation is a widespread laboratory technique used to separate mixtures into fractions characterized by a specific size, weight or density. We demonstrate that centrifugation can be also used to separate swimming cells having different motility. To do this we study self-propelled bacteria under the influence of an external centrifugal field. Using dynamic image correlation spectroscopy we measure the spatially resolved motility of bacteria after centrifugation. A significant gradient in swimming-speeds is observed for increasing centrifugal speeds. Our results can be reproduced by a model that treats bacteria as "hot" colloidal particles having a diffusion coefficient that depends on the swimming speed.Comment: 7 pages, 5 figures (in press

    An optical reaction micro-turbine

    Get PDF
    To any energy flow there is an associated flow of momentum, so that recoil forces arise every time an object absorbs or deflects incoming energy. This same principle governs the operation of macroscopic turbines as well as that of microscopic turbines that use light as the working fluid. However, a controlled and precise redistribution of optical energy is not easy to achieve at the micron scale resulting in a low efficiency of power to torque conversion. Here we use direct laser writing to fabricate 3D light guiding structures, shaped as a garden sprinkler, that can precisely reroute input optical power into multiple output channels. The shape parameters are derived from a detailed theoretical analysis of losses in curved microfibers. These optical reaction micro-turbines can maximally exploit light’s momentum to generate a strong, uniform and controllable torque

    Multidimensional Stationary Probability Distribution for Interacting Active Particles

    Full text link
    We derive the stationary probability distribution for a non-equilibrium system composed by an arbitrary number of degrees of freedom that are subject to Gaussian colored noise and a conservative potential. This is based on a multidimensional version of the Unified Colored Noise Approximation. By comparing theory with numerical simulations we demonstrate that the theoretical probability density quantitatively describes the accumulation of active particles around repulsive obstacles. In particular, for two particles with repulsive interactions, the probability of close contact decreases when one of the two particle is pinned. Moreover, in the case of isotropic confining potentials, the radial density profile shows a non trivial scaling with radius. Finally we show that the theory well approximates the "pressure" generated by the active particles allowing to derive an equation of state for a system of non-interacting colored noise-driven particles.Comment: 5 pages, 2 figure

    SAFE: Self-Attentive Function Embeddings for Binary Similarity

    Get PDF
    The binary similarity problem consists in determining if two functions are similar by only considering their compiled form. Advanced techniques for binary similarity recently gained momentum as they can be applied in several fields, such as copyright disputes, malware analysis, vulnerability detection, etc., and thus have an immediate practical impact. Current solutions compare functions by first transforming their binary code in multi-dimensional vector representations (embeddings), and then comparing vectors through simple and efficient geometric operations. However, embeddings are usually derived from binary code using manual feature extraction, that may fail in considering important function characteristics, or may consider features that are not important for the binary similarity problem. In this paper we propose SAFE, a novel architecture for the embedding of functions based on a self-attentive neural network. SAFE works directly on disassembled binary functions, does not require manual feature extraction, is computationally more efficient than existing solutions (i.e., it does not incur in the computational overhead of building or manipulating control flow graphs), and is more general as it works on stripped binaries and on multiple architectures. We report the results from a quantitative and qualitative analysis that show how SAFE provides a noticeable performance improvement with respect to previous solutions. Furthermore, we show how clusters of our embedding vectors are closely related to the semantic of the implemented algorithms, paving the way for further interesting applications (e.g. semantic-based binary function search).Comment: Published in International Conference on Detection of Intrusions and Malware, and Vulnerability Assessment (DIMVA) 201

    Generalized energy equipartition in harmonic oscillators driven by active baths

    Full text link
    We study experimentally and numerically the dynamics of colloidal beads confined by a harmonic potential in a bath of swimming E. coli bacteria. The resulting dynamics is well approximated by a Langevin equation for an overdamped oscillator driven by the combination of a white thermal noise and an exponentially correlated active noise. This scenario leads to a simple generalization of the equipartition theorem resulting in the coexistence of two different effective temperatures that govern dynamics along the flat and the curved directions in the potential landscape.Comment: 4 pages, 3 figure

    A stroll in the energy landscape

    Full text link
    We review recent results on the potential energy landscape (PES) of model liquids. The role of saddle-points in the PES in connecting dynamics to statics is investigated, confirming that a change between minima-dominated and saddle-dominated regions of the PES explored in equilibrium happens around the Mode Coupling Temperature. The structure of the low-energy saddles in the basins is found to be simple and hierarchically organized; the presence of saddles nearby in energy to the local minima indicates that, at non-cryogenic temperatures, entropic bottlenecks limit the dynamics.Comment: 8th International Workshop on Disordered Systems, Andalo (Trento), Italy, 12-15 March 200

    Invariance properties of bacterial random walks in complex structures

    Full text link
    Motile cells often explore natural environments characterized by a high degree of structural complexity. Moreover cell motility is also intrinsically noisy due to spontaneous random reorientation and speed fluctuations. This interplay of internal and external noise sources gives rise to a complex dynamical behavior that can be strongly sensitive to details and hard to model quantitatively. In striking contrast to this general picture we show that the mean residence time of swimming bacteria inside artificial complex microstructures, can be quantitatively predicted by a generalization of a recently discovered invariance property of random walks. We find that variations in geometry and structural disorder have a dramatic effect on the distributions of path length while mean values are strictly constrained by the sole free volume to surface ratio. Biological implications include the possibility of predicting and controlling the colonization of complex natural environments using only geometric informations

    Partial synchronisation of stochastic oscillators through hydrodynamic coupling

    Full text link
    Holographic optical tweezers are used to construct a static bistable optical potential energy landscape where a Brownian particle experiences restoring forces from two nearby optical traps and undergoes thermally activated transitions between the two energy minima. Hydrodynamic coupling between two such systems results in their partial synchronisation. This is interpreted as an emergence of higher mobility pathways, along which it is easier to overcome barriers to structural rearrangement.Comment: 4 pages, 4 figures, submitted to Phys. Rev. Let

    A polyphenol rich extract from Solanum melongena L. DR2 peel exhibits antioxidant properties and anti-herpes simplex virus type 1 activity in vitro

    Get PDF
    DR2B and DR2C extracts, obtained by ethanolic maceration of peel from commercially and physiologically ripe aubergine berries, were studied for the antioxidative cytoprotective properties and anti-HSV-1 activity, in line with the evidence that several antioxidants can impair viral replication by maintaining reducing conditions in host cells. The antioxidative cytoprotective effects against tBOOH-induced damage were assessed in Caco2 cells, while antiviral activity was studied in Vero cells; polyphenolic fingerprints were characterized by integrated phytochemical methods. Results highlighted different compositions of the extracts, with chlorogenic acid and delphinidin-3-rutinoside as the major constituents; other peculiar phytochemicals were also identified. Both samples reduced reactive oxygen species (ROS) production and exhibited scavenging and chelating properties. DR2C partly counteracted the tBOOH-induced cytotoxicity, with a remarkable lowering of lactate metabolism under both normoxia and hypoxia; interestingly, it increased intracellular GSH levels. Furthermore, DR2C inhibited the HSV-1 replication when added for 24 h after viral adsorption, as also confirmed by the reduction of many viral proteins’ expression. Since DR2C was able to reduce NOX4 expression during HSV-1 infection, its antiviral activity may be correlated to its antioxidant properties. Although further studies are needed to better characterize DR2C activity, the results suggest this extract as a promising new anti-HSV-1 agent
    corecore