46 research outputs found

    The Insulin Receptor: A New Target for Cancer Therapy

    Get PDF
    A large body of evidences have shown that both the IGF-I receptor (IGF-IR) and the insulin receptor (IR) play a role in cancer development and progression. In particular, IR overactivation by IGF-II is common in cancer cells, especially in dedifferentiated/stem-like cells. In spite of these findings, until very recently, only IGF-IR but not IR has been considered a target in cancer therapy. Although several preclinical studies have showed a good anti-cancer activity of selective anti-IGF-IR drugs, the results of the clinical first trials have been disappointing. In fact, only a small subset of malignant tumors has shown an objective response to these therapies. Development of resistance to anti-IGF-IR drugs may include upregulation of IR isoform A (IR-A) in cancer cells and its overactivation by increased secretion of autocrine IGF-II. These findings have led to the concept that co-targeting IR together with IGF-IR may increase therapy efficacy and prevent adaptive resistance to selective anti-IGF-IR drugs. IR blockade should be especially considered in tumors with high IR-A:IGF-IR ratio and high levels of autocrine IGF-II. Conversely, insulin sensitizers, which ameliorate insulin resistance associated with metabolic disorders and cancer treatments, may have important implications for cancer prevention and management. Only few drugs co-targeting the IR and IGF-IR are currently available. Ideally, future IR targeting strategies should be able to selectively inhibit the tumor promoting effects of IR without impairing its metabolic effects

    The Role of Metformin in the Management of NAFLD

    Get PDF
    Nonalcoholic fatty liver disease (NAFLD) is the most common liver disorder worldwide. Its prevalence ranges 10–24% in the general population, reaching 60–95% and 28–55% in obese and diabetic patients, respectively. Although the etiology of NAFLD is still unclear, several lines of evidences have indicated a pathogenetic role of insulin resistance in this disorder. This concept has stimulated several clinical studies where antidiabetic drugs, such as insulin sensitizers including metformin, have been evaluated in insulin-resistant, NAFLD patients. These studies indicate that metformin might be of benefit in the treatment of NAFLD, also in nondiabetic patients, when associated to hypocaloric diet and weight control. However, the heterogeneity of these studies still prevents us from reaching firm conclusions about treatment guidelines. Moreover, metformin could have beneficial tissue-specific effects in NAFLD patients irrespective of its effects as insulin sensitizer

    Metformin inhibits androgen-induced IGF-IR up-regulation in prostate cancer cells by disrupting membrane-initiated androgen signaling.

    Get PDF
    We have previously demonstrated that, in prostate cancer cells, androgens up-regulate IGF-I receptor (IGF-IR) by inducing cAMP-response element-binding protein (CREB) activation and CREB-dependent IGF-IR gene transcription through androgen receptor (AR)-dependent membrane-initiated effects. This IGF-IR up-regulation is not blocked by classical antiandrogens and sensitizes cells to IGF-I-induced biological effects. Metformin exerts complex antitumoral functions in various models and may inhibit CREB activation in hepatocytes. We, therefore, evaluated whether metformin may affect androgen-dependent IGF-IR up-regulation. In the AR(+) LNCaP prostate cancer cells, we found that metformin inhibits androgen-induced CRE activity and IGF-IR gene transcription. CRE activity requires the formation of a CREB-CREB binding protein-CREB regulated transcription coactivator 2 (CRTC2) complex, which follows Ser133-CREB phosphorylation. Metformin inhibited Ser133-CREB phosphorylation and induced nuclear exclusion of CREB cofactor CRTC2, thus dissociating the CREB-CREB binding protein-CRTC2 complex and blocking its transcriptional activity. Similarly to metformin action, CRTC2 silencing inhibited IGF-IR promoter activity. Moreover, metformin blocked membrane-initiated signals of AR to the mammalian target of rapamycin/p70S6Kinase pathway by inhibiting AR phosphorylation and its association with c-Src. AMPK signals were also involved to some extent. By inhibiting androgen-dependent IGF-IR up-regulation, metformin reduced IGF-I-mediated proliferation of LNCaP cells. These results indicate that, in prostate cancer cells, metformin inhibits IGF-I-mediated biological effects by disrupting membrane-initiated AR action responsible for IGF-IR up-regulation and suggest that metformin could represent a useful adjunct to the classical antiandrogen therapy

    Role of c-Abl in Directing Metabolic versus Mitogenic Effects in Insulin Receptor Signaling

    Get PDF
    c-Abl is a cytoplasmic tyrosine kinase involved in several signal transduction pathways. Here we report that c-Abl is involved also in insulin receptor signaling. Indeed, c-Abl tyrosine kinase is activated upon insulin stimulation. Inhibition of c-Abl tyrosine kinase by STI571 attenuates the effect of insulin on Akt/GSK-3beta phosphorylation and glycogen synthesis, and at the same time, it enhances the effect of insulin on ERK activation, cell proliferation, and migration. This effect of STI571 is specific to c-Abl inhibition, because it does not occur in Abl-null cells and is restored in c-Abl-reconstituted cells. Numerous evidences suggest that focal adhesion kinase (FAK) is involved in mediating this c-Abl effect. First, anti-phosphotyrosine blots indicate that c-Abl tyrosine kinase activation is concomitant with FAK dephosphorylation in response to insulin, whereas c-Abl inhibition is accompanied by FAK phosphorylation in response to insulin, a response similar to that observed with IGF-I. Second, the c-Abl effects on insulin signaling are not observed in cells devoid of FAK (FAK(-/-) cells). Taken together these results suggest that c-Abl activation by insulin, via a modification of FAK response, may play an important role in directing mitogenic versus metabolic insulin receptor signaling

    IGF-I induces upregulation of DDR1 collagen receptor in breast cancer cells by suppressing MIR-199a-5p through the PI3K/AKT pathway.

    Get PDF
    Discoidin Domain Receptor 1 (DDR1) is a collagen receptor tyrosine-kinase that contributes to epithelial-to-mesenchymal transition and enhances cancer progression. Our previous data indicate that, in breast cancer cells, DDR1 interacts with IGF-1R and positively modulates IGF-1R expression and biological responses, suggesting that the DDR1-IGF-IR cross-talk may play an important role in cancer.In this study, we set out to evaluate whether IGF-I stimulation may affect DDR1 expression. Indeed, in breast cancer cells (MCF-7 and MDA-MB-231) IGF-I induced significant increase of DDR1 protein expression, in a time and dose dependent manner. However, we did not observe parallel changes in DDR1 mRNA. DDR1 upregulation required the activation of the PI3K/AKT pathway while the ERK1/2, the p70/mTOR and the PKC pathways were not involved. Moreover, we observed that DDR1 protein upregulation was induced by translational mechanisms involving miR-199a-5p suppression through PI3K/AKT activation. This effect was confirmed by both IGF-II produced by cancer-associated fibroblasts from human breast cancer and by stable transfection of breast cancer cells with a human IGF-II expression construct. Transfection with a constitutively active form of AKT was sufficient to decrease miR-199a-5p and upregulate DDR1. Accordingly, IGF-I-induced DDR1 upregulation was inhibited by transfection with pre-miR-199a-5p, which also impaired AKT activation and cell migration and proliferation in response to IGF-I.These results demonstrate that, in breast cancer cells, a novel pathway involving AKT/miR-199a-5p/DDR1 plays a role in modulating IGFs biological responses. Therefore, this signaling pathway may represent an important target for breast cancers with over-activation of the IGF-IR axis

    The entero-insular axis: a journey in the physiopathology of diabetes

    Get PDF
    Glycemic homeostasis is an essential mechanism for the proper working of an organism. However, balance in blood lipid and protein levels also plays an important role. The discovery of the hormone insulin and the description of its function for glycemic control made fundamental scientific progress in this field. However, since then our view of the problem has been deeply influenced only in terms of glucose and insulin (in an insulin-centric and glucose-centric way). Based on recent scientific discoveries, a fine and sophisticated network of hormonal and metabolic interactions, involving almost every apparatus and tissue of the human body, has been theorized. Efficient metabolic homeostasis is founded on these intricate interactions. Although it is still not fully defined, this complex network can undergo alterations that lead to metabolic disorders such as diabetes mellitus (DM). The endocrine pancreas plays a crucial role in the metabolic balance of an organism, but insulin is just one of the elements involved and each single pancreatic islet hormone is worthy of our concern. Moreover, pancreatic hormones need to be considered in a general view, concerning both their systemic function as direct mediators and as hormones, which, in turn, are regulated by other hormones or other substances. This more complex scenario should be taken into account for a better understanding of the pathophysiology and the therapeutic algorithms of DM. As a consequence, improvements in modern medicine could help to contemplate this new perspective. This review is focused on some aspects of gut-pancreas interaction, aiming to integrate this synergy into a wider context involving other organs and tissues

    Coffee Restores Expression of lncRNAs Involved in Steatosis and Fibrosis in a Mouse Model of NAFLD

    Get PDF
    Background and aim: Coffee intake exerts protective effects against non-alcoholic fatty liver disease (NAFLD), although without fully cleared mechanisms. In this study we aimed to assess whether coffee consumption may influence the expression of long non-coding RNAs (lncRNAs) in the liver. Methods: C57BL/6J mice were fed a 12-week standard diet (SD), high-fat diet (HFD) or HFD plus decaffeinated coffee solution (HFD + coffee). Expression of specific lncRNAs involved in NAFLD was analyzed by real-time PCR. For the most differentially expressed lncRNAs, the analysis was also extended to their mRNA targets. Results: Decaffeinated coffee intake reduced body weight gain, prevented NAFLD, lowered hyperglycemia and hypercholesterolemia. NAFLD was associated with lower hepatic expression of Gm16551, a lncRNA inhibiting de novo lipogenesis, and higher expression of H19, a lncRNA promoting fibrogenesis. Coffee intake restored Gm16551 to levels observed in lean mice and downregulated gene expression of its targets acetyl coenzyme A carboxylase 1 and stearoyl coenzyme A desaturase 1. Furthermore, coffee consumption markedly decreased hepatic expression of H19 and of its target gene collagen alpha-1(I) chain; consistently, in mice fed HFD + coffee liver expression of αSMA protein returned to levels of mice fed SD. Expression of lncRNA involved in circadian clock such as fatty liver-related lncRNA 1 (FLRL1) and fatty liver-related lncRNA 2 (FLRL2) were upregulated by HFD and were also modulated by coffee intake. Conclusion: Hepatoprotective effects of coffee may be depending on the modulation of lncRNAs involved in key pathways of NAFLD onset and progression

    Novel Mechanisms of Tumor Promotion by the Insulin Receptor Isoform A in Triple-Negative Breast Cancer Cells

    Get PDF
    The insulin receptor isoform A (IR-A) plays an increasingly recognized role in fetal growth and tumor biology in response to circulating insulin and/or locally produced IGF2. This role seems not to be shared by the IR isoform B (IR-B). We aimed to dissect the specific impact of IR isoforms in modulating insulin signaling in triple negative breast cancer (TNBC) cells. We generated murine 4T1 TNBC cells deleted from the endogenous insulin receptor (INSR) gene and expressing comparable levels of either human IR-A or IR-B. We then measured IR isoform-specific in vitro and in vivo biological effects and transcriptome in response to insulin. Overall, the IR-A was more potent than the IR-B in mediating cell migration, invasion, and in vivo tumor growth. Transcriptome analysis showed that approximately 89% of insulin-stimulated transcripts depended solely on the expression of the specific isoform. Notably, in cells overexpressing IR-A, insulin strongly induced genes involved in tumor progression and immune evasion including chemokines and genes related to innate immunity. Conversely, in IR-B overexpressing cells, insulin predominantly induced the expression of genes primarily involved in the regulation of metabolic pathways and, to a lesser extent, tumor growth and angiogenesis

    Editorial on the Special Issue: “Pancreatic Islets of Langerhans: Not Only Beta-Cells”

    No full text
    This year marks the centenary of the discovery of insulin [...
    corecore