671 research outputs found

    DNA methylase activity associated with rous sarcoma virus

    Get PDF

    Microstructural Changes in Human Ingestive Behavior After Roux-en-Y Gastric Bypass During Liquid Meals

    Full text link
    BACKGROUND. Roux-en-Y gastric bypass (RYGB) decreases energy intake and is, therefore, an effective treatment of obesity. The behavioral bases of the decreased calorie intake remain to be elucidated. We applied the methodology of microstructural analysis of meal intake to establish the behavioral features of ingestion in an effort to discern the various controls of feeding as a function of RYGB. METHODS. The ingestive microstructure of a standardized liquid meal in a cohort of 11 RYGB patients, in 10 patients with obesity, and in 10 healthy-weight adults was prospectively assessed from baseline to 1 year with a custom-designed drinkometer. Statistics were performed on log-transformed ratios of change from baseline so that each participant served as their own control, and proportional increases and decreases were numerically symmetrical. Data-driven (3 seconds) and additional burst pause criteria (1 and 5 seconds) were used. RESULTS. At baseline, the mean meal size (909.2 versus 557.6 kCal), burst size (28.8 versus 17.6 mL), and meal duration (433 versus 381 seconds) differed between RYGB patients and healthy-weight controls, whereas suck volume (5.2 versus 4.6 mL) and number of bursts (19.7 versus 20.1) were comparable. At 1 year, the ingestive differences between the RYGB and healthy-weight groups disappeared due to significantly decreased burst size (P = 0.008) and meal duration (P = 0.034) after RYGB. The first-minute intake also decreased after RYGB (P = 0.022). CONCLUSION. RYGB induced dynamic changes in ingestive behavior over the first postoperative year. While the eating pattern of controls remained stable, RYGB patients reduced their meal size by decreasing burst size and meal duration, suggesting that increased postingestive sensibility may mediate postbariatric ingestive behavior. TRIAL REGISTRATION. NCT03747445; https://clinicaltrials.gov/ct2/show/NCT03747445. FUNDING. This work was supported by the University of Zurich, the Swiss National Fund (32003B_182309), and the Olga Mayenfisch Foundation. Bálint File was supported by the Hungarian Brain Research Program Grant (grant no. 2017-1.2.1-NKP-2017-00002)

    Deep Machine Learning Techniques for the Detection and Classification of Sperm Whale Bioacoustics

    Full text link
    We implemented Machine Learning (ML) techniques to advance the study of sperm whale (Physeter macrocephalus) bioacoustics. This entailed employing Convolutional Neural Networks (CNNs) to construct an echolocation click detector designed to classify spectrograms generated from sperm whale acoustic data according to the presence or absence of a click. The click detector achieved 99.5% accuracy in classifying 650 spectrograms. The successful application of CNNs to clicks reveals the potential of future studies to train CNN-based architectures to extract finer-scale details from cetacean spectrograms. Long short-term memory and gated recurrent unit recurrent neural networks were trained to perform classification tasks, including (1) “coda type classification” where we obtained 97.5% accuracy in categorizing 23 coda types from a Dominica dataset containing 8,719 codas and 93.6% accuracy in categorizing 43 coda types from an Eastern Tropical Pacific (ETP) dataset with 16,995 codas; (2) “vocal clan classification” where we obtained 95.3% accuracy for two clan classes from Dominica and 93.1% for four ETP clan types; and (3) “individual whale identification” where we obtained 99.4% accuracy using two Dominica sperm whales. These results demonstrate the feasibility of applying ML to sperm whale bioacoustics and establish the validity of constructing neural networks to learn meaningful representations of whale vocalizations

    A Maritime Advanced Geospatial Intelligence Craft for Oil Spill Response: White Paper

    Get PDF
    In line with current research thrusts on unmanned systems, the University of New Orleans has formed a collaborative team from industry, academia, and government (e.g., Department of Homeland Security). UNO’s intent is to work with organizations such as the Bureau of Safety and Environmental Enforcement (BSEE) to experiment and demonstrate the potential offered by Unmanned Surface Vessels within the Gulf of Mexico

    A Maritime Advanced Geospatial Intelligence Craft for Oil Spill Response: White Paper

    Get PDF
    In line with current research thrusts on unmanned systems, the University of New Orleans has formed a collaborative team from industry, academia, and government (e.g., Department of Homeland Security). UNO’s intent is to work with organizations such as the Bureau of Safety and Environmental Enforcement (BSEE) to experiment and demonstrate the potential offered by Unmanned Surface Vessels within the Gulf of Mexico

    Assessing daily energy intake in adult women: validity of a food-recognition mobile application compared to doubly labelled water

    Get PDF
    Accurate dietary assessment is crucial for nutrition and health research. Traditional methods, such as food records, food frequency questionnaires, and 24-hour dietary recalls (24HR), have limitations, such as the need for trained interviewers, time-consuming procedures, and inaccuracies in estimations. Novel technologies, such as image-based dietary assessment apps, have been developed to overcome these limitations. SNAQ is a novel image-based food-recognition app which, based on computer vision, assesses food type and volume, and provides nutritional information about dietary intake. This cross-sectional observational study aimed to investigate the validity of SNAQ as a dietary assessment tool for measuring energy and macronutrient intake in adult women with normal body weight (n = 30), compared to doubly labeled water (DLW), a reference method for total daily energy expenditure (TDEE). Energy intake was also estimated using a one-day 24HR for direct comparison. Bland–Altman plots, paired difference tests, and Pearson’s correlation coefficient were used to assess agreement and relationships between the methods. SNAQ showed a slightly higher agreement (bias = −329.6 kcal/day) with DLW for total daily energy intake (TDEI) compared to 24HR (bias = −543.0 kcal/day). While both SNAQ and 24HR tended to underestimate TDEI, only 24HR significantly differed from DLW in this regard (p < 0.001). There was no significant relationship between estimated TDEI and TDEE using SNAQ (R2 = 27%, p = 0.50) or 24HR (R2 = 34%, p = 0.20) and there were no significant differences in energy and macronutrient intake estimates between SNAQ and 24HR (Δ = 213.4 kcal/day). In conclusion, these results indicate that SNAQ provides a closer representation of energy intake in adult women with normal body weight than 24HR when compared to DLW, but no relationship was found between the energy estimates of DLW and of the two dietary assessment tools. Further research is needed to determine the clinical relevance and support the implementation of SNAQ in research and clinical settings.Clinical trial registration: This study is registered on ClinicalTrials.gov with the unique identifier NCT04600596 (https://clinicaltrials.gov/ct2/show/NCT04600596)
    corecore