2 research outputs found

    Using Individual Factor Information in Fractional Factorial Designs

    No full text
    <p>While literature on constructing efficient experimental designs has been plentiful, how best to incorporate prior information when assigning factors to the columns of a nonregular design has received little attention. Following Li, Zhou, and Zhang (<a href="#cit0009" target="_blank">2015</a>), we propose the individual generalized word length pattern (iGWLP) for ranking columns of a nonregular design. Taking examples from the literature of recommended orthogonal arrays, we illustrate how iGWLP helps to identify important differences in the aliasing that is likely otherwise missed. Given the complexity of characterizing partial aliasing for nonregular designs, iGWLP will help practitioners make more informed assignment of factors to columns when using nonregular fractions. We provide theoretical justification of the proposed iGWLP. A theorem is given to relate the proposed iGWLP criterion to the expected bias caused by model misspecifications. We also show that the proposed criterion may lead to designs having better projection properties in the factors considered most likely to be important. Furthermore, we discuss how iGWLP can be used for design selection. We propose a criterion for choosing best designs when the focus is on a small set of important factors, for which the aliasing of effects involving these factors is minimized.</p

    Selecting an Orthogonal or Nonorthogonal Two-Level Design for Screening

    No full text
    <p>This article presents a comparison of criteria used to characterize two-level designs for screening purposes. To articulate the relationships among criteria, we focus on 7-factor designs with 16–32 runs and 11-factor designs with 20–48 runs. Screening based on selected designs for each of the run sizes considered is studied with simulation using a forward selection procedure and the Dantzig selector. This article compares Bayesian D-optimal designs, designs created algorithmically to optimize estimation capacity over various model spaces, and orthogonal designs by estimation-based criteria and simulation. In this way, we furnish both general insights regarding various design approaches, as well as a guide to make a choice among a few final candidate designs. Supplementary materials for this article are available online.</p
    corecore