11 research outputs found

    Mechanisms of Contact, Adhesion, and Failure of Metallic Nanoasperities in the Presence of Adsorbates: Toward Conductive Contact Design

    No full text
    The properties of contacting interfaces are strongly affected not only by the bulk and surface properties of contacting materials but also by the ubiquitous presence of adsorbed contaminants. Here, we focus on the properties of single asperity contacts in the presence of adsorbates within a molecular dynamics description of metallic asperity normal contact and a parametric description of adsorbate properties. A platinum–platinum asperity contact is modeled with adsorbed oligomers with variable properties. This system is particularly tailored to the context of nanoelectromechanical system (NEMS) contact switches, but the results are generally relevant to metal–metal asperity contacts in nonpristine conditions. Even though mechanical forces can displace adsorbate out of the contact region, increasing the adsorbate layer thickness and/or adsorbate/metal adhesion makes it more difficult for metal asperity/metal surface contact to occur, thereby lowering the electrical contact conductance. Contact separation is a competition between plastic necking in the asperity or decohesion at the asperity/substrate interface. The mechanism which operates at a lower tensile stress dominates. Necking dominates when the adsorbate/metal adhesion is strong and/or the adsorbate layer thickness is small. In broad terms, necking implies larger asperity deformation and mechanical work, as compared with decohesion. Optimal NEMS switch performance requires substantial contact conductance and minimal asperity deformation; these results indicate that these goals can be achieved by balancing the quantity of adsorbates and their adhesion to the metal surface

    Accounting for Nanometer-Thick Adventitious Carbon Contamination in X‑ray Absorption Spectra of Carbon-Based Materials

    No full text
    Near-edge X-ray absorption fine structure (NEXAFS) spectroscopy is a powerful technique for characterizing the composition and bonding state of nanoscale materials and the top few nanometers of bulk and thin film specimens. When coupled with imaging methods like photoemission electron microscopy, it enables chemical imaging of materials with nanometer-scale lateral spatial resolution. However, analysis of NEXAFS spectra is often performed under the assumption of structural and compositional homogeneity within the nanometer-scale depth probed by this technique. This assumption can introduce large errors when analyzing the vast majority of solid surfaces due to the presence of complex surface and near-surface structures such as oxides and contamination layers. An analytical methodology is presented for removing the contribution of these nanoscale overlayers from NEXAFS spectra of two-layered systems to provide a corrected photoabsorption spectrum of the substrate. This method relies on the subtraction of the NEXAFS spectrum of the overlayer adsorbed on a reference surface from the spectrum of the two-layer system under investigation, where the thickness of the overlayer is independently determined by X-ray photoelectron spectroscopy (XPS). This approach is applied to NEXAFS data acquired for one of the most challenging cases: air-exposed hard carbon-based materials with adventitious carbon contamination from ambient exposure. The contribution of the adventitious carbon was removed from the as-acquired spectra of ultrananocrystalline diamond (UNCD) and hydrogenated amorphous carbon (a-C:H) to determine the intrinsic photoabsorption NEXAFS spectra of these materials. The method alters the calculated fraction of sp<sup>2</sup>-hybridized carbon from 5 to 20% and reveals that the adventitious contamination can be described as a layer containing carbon and oxygen ([O]/[C] = 0.11 ± 0.02) with a thickness of 0.6 ± 0.2 nm and a fraction of sp<sup>2</sup>-bonded carbon of 0.19 ± 0.03. This method can be generally applied to the characterization of surfaces and interfaces in several research fields and technological applications

    Stick–Slip Instabilities for Interfacial Chemical Bond-Induced Friction at the Nanoscale

    No full text
    Earthquakes are generally caused by unstable stick–slip motion of faults. This stick–slip phenomenon, along with other frictional properties of materials at the macroscale, is well-described by empirical rate and state friction (RSF) laws. Here we study stick–slip behavior for nanoscale single-asperity silica–silica contacts in atomic force microscopy experiments. The stick–slip is quasiperiodic, and both the amplitude and spatial period of stick–slip increase with normal load and decrease with the loading point (i.e., scanning) velocity. The peak force prior to each slip increases with the temporal period logarithmically, and decreases with velocity logarithmically, consistent with stick–slip behavior at the macroscale. However, unlike macroscale behavior, the minimum force after each slip is independent of velocity. The temporal period scales with velocity in a nearly power law fashion with an exponent between −1 and −2, similar to macroscale behavior. With increasing velocity, stick–slip behavior transitions into steady sliding. In the transition regime between stick–slip and smooth sliding, some slip events exhibit only partial force drops. The results are interpreted in the context of interfacial chemical bond formation and rate effects previously identified for nanoscale contacts. These results contribute to a physical picture of interfacial chemical bond-induced stick–slip, and further establish RSF laws at the nanoscale

    Controlling Nanoscale Friction through the Competition between Capillary Adsorption and Thermally Activated Sliding

    No full text
    We demonstrate measurement and control of nanoscale single-asperity friction by using cantilever probes featuring an <i>in situ</i> solid-state heater in contact with silicon oxide substrates. The heater temperature was varied between 25 and 790 °C. By using a low thermal conductivity sample, silicon oxide, we are able to vary tip temperatures over a broad range from 25 ± 2 to 255 ± 25 °C. In ambient atmosphere with ∼30% relative humidity, the control of friction forces was achieved through the formation of a capillary bridge whose characteristics exhibit a strong dependence on temperature and sliding speed. The capillary condensation is observed to be a thermally activated process, such that heating in ambient air caused friction to increase due to the capillary bridge nucleating and growing. Above tip temperatures of ∼100 ± 10 °C, friction decreased drastically, which we attribute to controllably evaporating water from the contact at the nanoscale. In contrast, in a dry nitrogen atmosphere, friction was not affected appreciably by temperature changes. In the presence of a capillary, friction decreases at higher sliding speeds due to disruption of the capillary; otherwise, friction increases in accordance with the predictions of a thermally assisted sliding model. In ambient atmospheres, the rate of increase of friction with sliding speed at room temperature is sufficiently strong that the friction force changes from being smaller than the response at 76 ± 8 °C to being larger. Thus, an appropriate change in temperature can cause friction to increase at one sliding speed, while it decreases at another speed

    Thermally Induced Structural Evolution of Silicon- and Oxygen-Containing Hydrogenated Amorphous Carbon: A Combined Spectroscopic and Molecular Dynamics Simulation Investigation

    No full text
    Silicon- and oxygen-containing hydrogenated amorphous carbon (a-C:H:Si:O) coatings are amorphous thin-film materials composed of hydrogenated amorphous carbon (a-C:H), doped with silicon and oxygen. Compared to a-C:H, a-C:H:Si:O exhibits much lower susceptibility to oxidative degradation and higher thermal stability, making a-C:H:Si:O attractive for many applications. However, the physical mechanisms for this improved behavior are not understood. Here, the thermally induced structural evolution of a-C:H:Si:O was investigated in situ by X-ray photoelectron and absorption spectroscopy, as well as molecular dynamics (MD) simulations. The spectroscopy results indicate that upon high vacuum annealing, two thermally activated processes with a Gaussian distribution of activation energies with mean value <i>E</i> and standard deviation σ take place in a-C:H:Si:O: (a) ordering and clustering of sp<sup>2</sup> carbon (<i>E</i> ± σ = 0.22 ± 0.08 eV) and (b) conversion of sp<sup>3</sup>- to sp<sup>2</sup>-bonded carbon (<i>E</i> ± σ = 3.0 ± 1.1 eV). The experimental results are in qualitative agreement with the outcomes of MD simulations performed using a ReaxFF potential. The MD simulations also indicate that the higher thermal stability of a-C:H:Si:O compared to a-C:H (with similar fraction of sp<sup>2</sup>-bonded carbon and hydrogen content) derives from the significantly lower fraction of strained carbon–carbon sp<sup>3</sup> bonds in a-C:H:Si:O compared to a-C:H, which are more likely to break at elevated temperatures

    Frictional Behavior of Atomically Thin Sheets: Hexagonal-Shaped Graphene Islands Grown on Copper by Chemical Vapor Deposition

    No full text
    Single asperity friction experiments using atomic force microscopy (AFM) have been conducted on chemical vapor deposited (CVD) graphene grown on polycrystalline copper foils. Graphene substantially lowers the friction force experienced by the sliding asperity of a silicon AFM tip compared to the surrounding oxidized copper surface by a factor ranging from 1.5 to 7 over loads from the adhesive minimum up to 80 nN. No damage to the graphene was observed over this range, showing that friction force microscopy serves as a facile, high contrast probe for identifying the presence of graphene on Cu. Consistent with studies of epitaxially grown, thermally grown, and mechanically exfoliated graphene films, the friction force measured between the tip and these CVD-prepared films depends on the number of layers of graphene present on the surface and reduces friction in comparison to the substrate. Friction results on graphene indicate that the layer-dependent friction properties result from puckering of the graphene sheet around the sliding tip. Substantial hysteresis in the normal force dependence of friction is observed with repeated scanning without breaking contact with a graphene-covered region. Because of the hysteresis, friction measured on graphene changes with time and maximum applied force, unless the tip slides over the edge of the graphene island or contact with the surface is broken. These results also indicate that relatively weak binding forces exist between the copper foil and these CVD-grown graphene sheets

    Nanomechanics of pH-Responsive, Drug-Loaded, Bilayered Polymer Grafts

    No full text
    Stimuli-responsive polymer films play an important role in the development of smart antibacterial coatings. In this study, we consider complementary architectures of polyelectrolyte films, including a thin chitosan layer (CH), poly­(acrylic acid) (PAA) brushes, and a bilayer structure of CH grafted to PAA brushes (CH/PAA) as possible candidates for targeted drug delivery platforms. Atomic force microscopy (AFM) was employed to study the structure–mechanical property relationship for these mono- and bi-layered polymer grafts at pH 7.4 and 4.0, corresponding to physiological and biofilm formation conditions, respectively. Herein, the surface interactions between polymer grafts and the negatively charged silica colloid attached to an AFM lever are considered as representative interactions between the antibacterial coating and a bacteria/biofilm. The bilayered structure of CH/PAA showed significantly reduced adhesive interactions in comparison to pure CH but slightly higher interactions in comparison to PAA films. Among PAA and CH/PAA films, upon grafting CH over the PAA brushes, the normal stiffness increased by 10-fold at pH 7.4 and 20-fold at pH 4.0. Notably, the study also showed that the addition of an antibiotic drug such as multicationic Tobramycin (TOB) impacts the mechanical properties of the antibacterial coatings. Competition between TOB and water molecules for the PAA chains is shown to determine the structural properties of PAA and CH/PAA films loaded with TOB. At high pH (7.4), the TOB molecules, which remain multicationic, strongly interact with polyanionic PAA, thereby reducing the film’s compressibility. On the contrary, at low pH (4.0), the water molecules preferentially interact with TOB in comparison to uncharged PAA chains and, upon TOB release, results in a stronger film collapse together with an increase in adhesive interactions between the probe, the surface, and the elastic modulus of the film. The bacterial proliferation on these platforms when compared to the measured mechanical properties shows a direct correlation; hence, understanding nanomechanical properties can provide insights into designing new antibacterial polymer coatings

    Heterogeneity in the Small-Scale Deformation Behavior of Disordered Nanoparticle Packings

    No full text
    Atomic force microscopy-based nanoindentation is used to image and probe the local mechanical properties of thin disordered nanoparticle packings. The probed region is limited to the size of a few particles, and an individual particle can be loaded and displaced to a fraction of a single particle radius. The results demonstrate heterogeneous mechanical response that is location-dependent. The weak locations may be analogous to the “soft spots” previously predicted in glasses and other disordered packings

    Fluorination of Graphene Enhances Friction Due to Increased Corrugation

    No full text
    The addition of a single sheet of carbon atoms in the form of graphene can drastically alter friction between a nanoscale probe tip and a surface. Here, for the first time we show that friction can be altered over a wide range by fluorination. Specifically, the friction force between silicon atomic force microscopy tips and monolayer fluorinated graphene can range from 5−9 times higher than for graphene. While consistent with previous reports, the combined interpretation from our experiments and molecular dynamics simulations allows us to propose a novel mechanism: that the dramatic friction enhancement results from increased corrugation of the interfacial potential due to the strong local charge concentrated at fluorine sites, consistent with the Prandtl-Tomlinson model. The monotonic increase of friction with fluorination in experiments also demonstrates that friction force measurements provide a sensitive local probe of the degree of fluorination. Additionally, we found a transition from ordered to disordered atomic stick–slip upon fluorination, suggesting that fluorination proceeds in a spatially random manner

    Tribochemical Wear of Diamond-Like Carbon-Coated Atomic Force Microscope Tips

    No full text
    Nanoscale wear is a critical issue that limits the performance of tip-based nanomanufacturing and nanometrology processes based on atomic force microscopy (AFM). Yet, a full scientific understanding of nanoscale wear processes remains in its infancy. It is therefore important to quantitatively understand the wear behavior of AFM tips. Tip wear is complex to understand due to adhesive forces and contact stresses that change substantially as the contact geometry evolves due to wear. Here, we present systematic characterization of the wear of commercial Si AFM tips coated with thin diamond-like carbon (DLC) coatings. Wear of DLC was measured as a function of external loading and sliding distance. Transmission electron microscopy imaging, AFM-based adhesion measurements, and tip geometry estimation via inverse imaging were used to assess nanoscale wear and the contact conditions over the course of the wear tests. Gradual wear of DLC with sliding was observed in the experiments, and the tips evolved from initial paraboloidal shapes to flattened geometries. The wear rate is observed to increase with the average contact stress, but does not follow the classical wear law of Archard. A wear model based on the transition state theory, which gives an Arrhenius relationship between wear rate and normal stress, fits the experimental data well for low mean contact stresses (<0.3 GPa), yet it fails to describe the wear at higher stresses. The wear behavior over the full range of stresses is well described by a recently proposed multibond wear model that exhibits a change from Archard-like behavior at high stresses to a transition state theory description at lower stresses
    corecore