15 research outputs found

    Development of nickel-selective molecularly imprinted polymers

    Get PDF
    A series of eight novel bidentate ligands, designed for use in the construction of nickel-selective molecularly imprinted polymers (MIP's), have been prepared. The synthetic pathway was established by retrosynthetic analysis of the target molecules to the readily available precursors, pyridine-2-carbaldehyde (or 6-methylpyridine-2-carbaldehyde) and ethyl bromoacetate. The ligands were designed to contain an allyl group for co-polymerisation and amine and pyridyl nitrogen donors, located to permit the formation of 5-membered nickel chelates. The eight novel ligands and their respective precursors were characterized by elemental (high-resolution MS) and spectroscopic (IR and ¹H and ¹³C NMR) analysis. High resolution electron-impact mass spectrometry has also been used, together with B/E linked scan data, to explore the fragmentation patterns of selected ligands. The various nickel(ll) complexes were analyzed using spectroscopic techniques and, in some cases, elemental analysis; computer modelling has also been used to explore conformational effects and complex stability. Numerous MIP's, containing nickel(II) complexes of the bidentate ligands, have been prepared, using ethylene glycol dimethylacrylate (EGDMA) as the cross-linker, azobis(isobutyronitrile) (AlBN) as the polymerization initiator and MeOH as the porogenic solvent. The template nickel(II) ions were leached out with conc. HCI, and the nickel(II) selectivity [in the presence of Fe(Ill)] of the nickel-imprinted polymers was examined by ICP-MS analysis. The ICP-MS data indicate that the MIP's examined exhibit extremely high selectivity for nickel over iron.KMBT_363Adobe Acrobat 9.54 Paper Capture Plug-i

    Facile deposition of gold nanoparticle thin films on semi-permeable cellulose substrate

    Get PDF
    This study reports the facile method for the deposition of gold nanoparticle thin film onto a monoporous semi-permeable cellulose membrane through the diffusion of borohydride ions leading to the reduction of AuCl4− ions. The synthesis of gold nanoparticle thin film was deposited on one side of the membrane that was exposed to AuCl4− ions while the other side containing a reducing agent remained clear. The gold nanoparticle thin film exhibited a broad surface plasmon resonance (SPR) peak at 529 nm. Various characterization techniques were employed and all demonstrated the presence of gold thin film. The reported method represents a simplistic method for the deposition of gold nanoparticle thin films and various other metal nanoparticles may be deposited following this method

    Selective adsorption of PVP on the surface of silver nanoparticles

    Get PDF
    The use of surfactants to affect the shape evolution of silver nanoparticles is explored. This allows one to fine-tune the morphological evolution and the optical properties of the metal nanoparticles. Polyvinyl pyrrolidone (PVP) has been used as a surfactant to control the growth of silver nanoparticles at room temperature. In this paper, molecular dynamics simulations were performed to understand regio-selective adsorption of PVP that leads to the preferential growth of silver nanoparticles in dimethylformamide (DMF). The interaction energies between PVP and Ag(1 1 0), Ag(1 0 0) and Ag(1 1 1) crystal planes were calculated and in addition the length density profile of the surfactant on silver surfaces was also examined. Importantly, it has been demonstrated that the length distribution profiles analysis obtained from the molecular dynamics study fully explained the adsorption of PVP on the surface of silver nanoparticles through the carbonyl group of the PVP ring. The application of molecular dynamics simulation technique is important in understanding the evolution of silver nanoparticles and is vital in choosing the right surfactants

    Synthesis, density functional theory, molecular dynamics and electrochemical studies of 3-thiopheneacetic acid-capped gold nanoparticles

    Get PDF
    Gold nanoparticles capped with a bifunctional ligand, 3-thiopheneacetic acid (3-TAA) were synthesised by borohydride reduction at room temperature. The transmission electron microscopy (TEM) analysis showed that the particle aggregates and had semi-linear partial linkages that could be attributed to multi-modal binding of the ligand with various gold nanoparticles through the terminal thiolether (–S–) group and oxygen of the carboxylic (–COOH) group. This bimodal interaction led to limited stability of the resultant nanoparticles when tested using highly electrolytic media. To investigate further, density functional theory (DFT) quantum chemical and molecular dynamic calculations were conducted. The energetically favorable binding modes of the ligand to gold nanoparticle surfaces using the Gaussian program were studied. The DFT results showed kinetic stability of Au–3-TAA–Au interactions leading to inter-particle coupling or aggregation. Electrochemical analysis of the resultant nature of the capping agent revealed that 3-thiopheneacetic acid did not form a polymer during the preparation of Au–3-TAA. The cyclic voltammograms of Au–3-TAA nanoparticles coated glassy carbon electrode showed a typical gold character with the oxidation and reduction peaks at 1.4 V and 0.9 V, respectively

    Facile Attachment of TAT Peptide on Gold Monolayer Protected Clusters: Synthesis and Characterization

    No full text
    High affinity thiolate-based polymeric capping ligands are known to impart stability onto nanosized gold nanoparticles. Due to the stable gold-sulfur bond, the ligand forms a protective layer around the gold core and subsequently controls the physicochemical properties of the resultant nanogold mononuclear protected clusters (AuMPCs). The choice of ligands to use as surfactants for AuMPCs largely depends on the desired degree of hydrophilicity and biocompatibility of the MPCs, normally dictated by the intended application. Subsequent surface modification of AuMPCs allows further conjugation of additional biomolecules yielding bilayer or multilayered clusters suitable for bioanalytical applications ranging from targeted drug delivery to diagnostics. In this study, we discuss our recent laboratory findings on a simple route for the introduction of Trans-Activator of Transcription (TAT) peptide onto the surface of biotin-derivatised gold MPCs via the biotin-strepavidin interaction. By changing the surface loading of biotin, controlled amounts of TAT could be attached. This bioconjugate system is very attractive as a carrier in intercellular delivery of various delivery cargoes such as antibodies, proteins and oligonucleotides

    Facile deposition of gold nanoparticle thin films on semi-permeable cellulose substrate

    Get PDF
    This study reports the facile method for the deposition of gold nanoparticle thin film onto a monoporous semi-permeable cellulose membrane through the diffusion of borohydride ions leading to the reduction of AuCl4− ions. The synthesis of gold nanoparticle thin film was deposited on one side of the membrane that was exposed to AuCl4− ions while the other side containing a reducing agent remained clear. The gold nanoparticle thin film exhibited a broad surface plasmon resonance (SPR) peak at 529 nm. Various characterization techniques were employed and all demonstrated the presence of gold thin film. The reported method represents a simplistic method for the deposition of gold nanoparticle thin films and various other metal nanoparticles may be deposited following this method

    Selective adsorption of PVP on the surface of silver nanoparticles

    Get PDF
    The use of surfactants to affect the shape evolution of silver nanoparticles is explored. This allows one to fine-tune the morphological evolution and the optical properties of the metal nanoparticles. Polyvinyl pyrrolidone (PVP) has been used as a surfactant to control the growth of silver nanoparticles at room temperature. In this paper, molecular dynamics simulations were performed to understand regio-selective adsorption of PVP that leads to the preferential growth of silver nanoparticles in dimethylformamide (DMF). The interaction energies between PVP and Ag(1 1 0), Ag(1 0 0) and Ag(1 1 1) crystal planes were calculated and in addition the length density profile of the surfactant on silver surfaces was also examined. Importantly, it has been demonstrated that the length distribution profiles analysis obtained from the molecular dynamics study fully explained the adsorption of PVP on the surface of silver nanoparticles through the carbonyl group of the PVP ring. The application of molecular dynamics simulation technique is important in understanding the evolution of silver nanoparticles and is vital in choosing the right surfactants
    corecore