3 research outputs found

    Discovery of <i>N</i>‑[4-(Quinolin-4-yloxy)phenyl]­benzene­sulfonamides as Novel AXL Kinase Inhibitors

    No full text
    The overexpression of AXL kinase has been described in many types of cancer. Due to its role in proliferation, survival, migration, and resistance, AXL represents a promising target in the treatment of the disease. In this study we present a novel compound family that successfully targets the AXL kinase. Through optimization and detailed SAR studies we developed low nanomolar inhibitors, and after further biological characterization we identified a potent AXL kinase inhibitor with favorable pharmacokinetic profile. The antitumor activity was determined in xenograft models, and the lead compounds reduced the tumor size by 40% with no observed toxicity as well as lung metastasis formation by 66% when compared to vehicle control

    Discovery of <i>N</i>‑[4-(Quinolin-4-yloxy)phenyl]­benzene­sulfonamides as Novel AXL Kinase Inhibitors

    No full text
    The overexpression of AXL kinase has been described in many types of cancer. Due to its role in proliferation, survival, migration, and resistance, AXL represents a promising target in the treatment of the disease. In this study we present a novel compound family that successfully targets the AXL kinase. Through optimization and detailed SAR studies we developed low nanomolar inhibitors, and after further biological characterization we identified a potent AXL kinase inhibitor with favorable pharmacokinetic profile. The antitumor activity was determined in xenograft models, and the lead compounds reduced the tumor size by 40% with no observed toxicity as well as lung metastasis formation by 66% when compared to vehicle control

    Discovery and Biological Evaluation of Novel Dual EGFR/c-Met Inhibitors

    No full text
    Activating mutations in the epidermal growth factor receptor (EGFR) have been identified in a subset of non-small cell lung cancer (NSCLC), which is one of the leading cancer types worldwide. Application of EGFR tyrosine kinase inhibitors leads to acquired resistance by secondary EGFR mutations or by amplification of the hepatocyte growth factor receptor (<i>c-Met</i>) gene. Although several EGFR and c-Met inhibitors have been reported, potent dual EGFR/c-Met inhibitors, which can overcome this latter resistance mechanism, have hitherto not been published and have not reached clinical trials. In the present study we have identified dual EGFR/c-Met inhibitors and designed novel <i>N</i>-[4-(quinolin-4-yloxy)-phenyl]-biarylsulfonamide derivatives, which inhibit the c-Met receptor and both the wild-type and the activating mutant EGFR kinases in nanomolar range. We have demonstrated by Western blot analysis that compound <b>10</b> inhibits EGFR and c-Met phosphorylation at cellular level and effectively inhibits viability of the NSCLC cell lines
    corecore