122 research outputs found

    The performance of arm locking in LISA

    Full text link
    For the laser interferometer space antenna (LISA) to reach it's design sensitivity, the coupling of the free running laser frequency noise to the signal readout must be reduced by more than 14 orders of magnitude. One technique employed to reduce the laser frequency noise will be arm locking, where the laser frequency is locked to the LISA arm length. This paper details an implementation of arm locking, studies orbital effects, the impact of errors in the Doppler knowledge, and noise limits. The noise performance of arm locking is calculated with the inclusion of the dominant expected noise sources: ultra stable oscillator (clock) noise, spacecraft motion, and shot noise. Studying these issues reveals that although dual arm locking [A. Sutton & D. A Shaddock, Phys. Rev. D 78, 082001 (2008).] has advantages over single (or common) arm locking in terms of allowing high gain, it has disadvantages in both laser frequency pulling and noise performance. We address this by proposing a hybrid sensor, retaining the benefits of common and dual arm locking sensors. We present a detailed design of an arm locking controller and perform an analysis of the expected performance when used with and without laser pre-stabilization. We observe that the sensor phase changes beneficially near unity-gain frequencies of the arm-locking controller, allowing a factor of 10 more gain than previously believed, without degrading stability. We show that the LISA frequency noise goal can be realized with arm locking and Time-Delay Interferometry only, without any form of pre-stabilization.Comment: 28 pages, 36 figure

    Postprocessed time-delay interferometry for LISA

    Get PDF
    High-precision interpolation of LISA phase measurements allows signal reconstruction and formulation of time-delay interferometry (TDI) combinations to be conducted in postprocessing. The reconstruction is based on phase measurements made at approximately 10 Hz (for a 1 Hz signal bandwidth) at regular intervals independent of the TDI delay times. Interpolation introduces an error less than 1 × 10-8 with continuous data segments as short as 2 s in duration. The 10 Hz sampling rate represents an increase from the 2 Hz sampling rate needed for the original implementation of TDI. The advantages of this technique include increased flexibility of the data analysis and significantly simplified hardware

    High-Accuracy, High-Dynamic-Range Phase-Measurement System

    Get PDF
    A digital phase meter has been designed to satisfy stringent requirements for measuring differences between phases of radio-frequency (RF) subcarrier signals modulated onto laser beams involved in the operation of a planned space-borne gravitational-wave-detecting heterodyne laser interferometer. The capabilities of this system could also be used in diverse terrestrial applications that involve measurement of signal phases, including metrology, navigation, and communications

    Phase measurement device using inphase and quadrature components for phase estimation

    Get PDF
    A phasemeter for estimating the phase of a signal. For multi-tone signals, multiple phase estimates may be provided. An embodiment includes components operating in the digital domain, where a sampled input signal is multiplied by cosine and sine terms to provide estimates of the inphase and quadrature components. The quadrature component provides an error signal that is provided to a feedback loop, the feedback loop providing a model phase that tends to track the phase of a tone in the input signal. The cosine and sine terms are generated from the model phase. The inphase and quadrature components are used to form a residual phase, which is added to the model phase to provide an estimate of the phase of the input signal. Other embodiments are described and claimed

    Digital Averaging Phasemeter for Heterodyne Interferometry

    Get PDF
    A digital averaging phasemeter has been built for measuring the difference between the phases of the unknown and reference heterodyne signals in a heterodyne laser interferometer. This phasemeter performs well enough to enable interferometric measurements of distance with accuracy of the order of 100 pm and with the ability to track distance as it changes at a speed of as much as 50 cm/s. This phasemeter is unique in that it is a single, integral system capable of performing three major functions that, heretofore, have been performed by separate systems: (1) measurement of the fractional-cycle phase difference, (2) counting of multiple cycles of phase change, and (3) averaging of phase measurements over multiple cycles for improved resolution. This phasemeter also offers the advantage of making repeated measurements at a high rate: the phase is measured on every heterodyne cycle. Thus, for example, in measuring the relative phase of two signals having a heterodyne frequency of 10 kHz, the phasemeter would accumulate 10,000 measurements per second. At this high measurement rate, an accurate average phase determination can be made more quickly than is possible at a lower rate

    Experimental Demonstration of Time-Delay Interferometry for the Laser Interferometer Space Antenna

    Full text link
    We report on the first demonstration of time-delay interferometry (TDI) for LISA, the Laser Interferometer Space Antenna. TDI was implemented in a laboratory experiment designed to mimic the noise couplings that will occur in LISA. TDI suppressed laser frequency noise by approximately 10^9 and clock phase noise by 6x10^4, recovering the intrinsic displacement noise floor of our laboratory test bed. This removal of laser frequency noise and clock phase noise in post-processing marks the first experimental validation of the LISA measurement scheme.Comment: 4 pages, 4 figures, to appear in Physical Review Letters end of May 201

    Automatic Alignment of Displacement-Measuring Interferometer

    Get PDF
    A control system strives to maintain the correct alignment of a laser beam in an interferometer dedicated to measuring the displacement or distance between two fiducial corner-cube reflectors. The correct alignment of the laser beam is parallel to the line between the corner points of the corner-cube reflectors: Any deviation from parallelism changes the length of the optical path between the reflectors, thereby introducing a displacement or distance measurement error. On the basis of the geometrical optics of corner-cube reflectors, the length of the optical path can be shown to be L = L(sub 0)cos theta, where L(sub 0) is the distance between the corner points and theta is the misalignment angle. Therefore, the measurement error is given by DeltaL = L(sub 0)(cos theta - 1). In the usual case in which the misalignment is small, this error can be approximated as DeltaL approximately equal to -L(sub 0)theta sup 2/2. The control system (see figure) is implemented partly in hardware and partly in software. The control system includes three piezoelectric actuators for rapid, fine adjustment of the direction of the laser beam. The voltages applied to the piezoelectric actuators include components designed to scan the beam in a circular pattern so that the beam traces out a narrow cone (60 microradians wide in the initial application) about the direction in which it is nominally aimed. This scan is performed at a frequency (2.5 Hz in the initial application) well below the resonance frequency of any vibration of the interferometer. The laser beam makes a round trip to both corner-cube reflectors and then interferes with the launched beam. The interference is detected on a photodiode. The length of the optical path is measured by a heterodyne technique: A 100- kHz frequency shift between the launched beam and a reference beam imposes, on the detected signal, an interferometric phase shift proportional to the length of the optical path. A phase meter comprising analog filters and specialized digital circuitry converts the phase shift to an indication of displacement, generating a digital signal proportional to the path length

    Progress in Interferometry for LISA at JPL

    Full text link
    Recent advances at JPL in experimentation and design for LISA interferometry include the demonstration of Time Delay Interferometry using electronically separated end stations, a new arm-locking design with improved gain and stability, and progress in flight readiness of digital and analog electronics for phase measurements.Comment: 11 pages, 9 figures, LISA 8 Symposium, Stanford University, 201
    corecore