3,900 research outputs found
High resolution cathodoluminescence hyperspectral imaging of surface features in InGaN/GaN multiple quantum well structures
InGaN/GaN multiple quantum wells (MQWs) have been studied by using
cathodoluminescence hyperspectral imaging with high spatial resolution.
Variations in peak emission energies and intensities across trench-like
features and V-pits on the surface of the MQWs are investigated. The MQW
emission from the region inside trench-like features is red-shifted by
approximately 45 meV and more intense than the surrounding planar regions of
the sample, whereas emission from the V-pits is blue-shifted by about 20 meV
and relatively weaker. By employing this technique to the studied
nanostructures it is possible to investigate energy and intensity shifts on a
10 nm length scale.Comment: 3 pages, 3 figure
Approach to the Continuum Limit of the Quenched Hermitian Wilson-Dirac Operator
We investigate the approach to the continuum limit of the spectrum of the
Hermitian Wilson-Dirac operator in the supercritical mass region for pure gauge
SU(2) and SU(3) backgrounds. For this we study the spectral flow of the
Hermitian Wilson-Dirac operator in the range . We find that the
spectrum has a gap for and that the spectral density at zero,
, is non-zero for . We find that and, for
(exponential in the lattice spacing) as one goes to
the continuum limit. We also compute the topological susceptibility and the
size distribution of the zero modes. The topological susceptibility scales well
in the lattice spacing for both SU(2) and SU(3). The size distribution of the
zero modes does not appear to show a peak at a physical scale.Comment: 19 pages revtex with 9 postscript figures included by eps
Helicity operators for mesons in flight on the lattice
Motivated by the desire to construct meson-meson operators of definite
relative momentum in order to study resonances in lattice QCD, we present a set
of single-meson interpolating fields at non-zero momentum that respect the
reduced symmetry of a cubic lattice in a finite cubic volume. These operators
follow from the subduction of operators of definite helicity into irreducible
representations of the appropriate little groups. We show their effectiveness
in explicit computations where we find that the spectrum of states interpolated
by these operators is close to diagonal in helicity, admitting a description in
terms of single-meson states of identified J^{PC}. The variationally determined
optimal superpositions of the operators for each state give rapid relaxation in
Euclidean time to that state, ideal for the construction of meson-meson
operators and for the evaluation of matrix elements at finite momentum.Comment: 25 pages, 14 figures; v2: minor changes to reflect journal versio
S and D-wave phase shifts in isospin-2 pi pi scattering from lattice QCD
The isospin-2 pi pi system provides a useful testing ground for determining
elastic hadron scattering parameters from finite-volume spectra obtained using
lattice QCD computations. A reliable determination of the excited state
spectrum of two pions in a cubic box follows from variational analysis of
correlator matrices constructed using a large basis of operators. A general
operator construction is presented which respects the symmetries of a
multi-hadron system in flight. This is applied to the case of pi pi and allows
for the determination of the scattering phase-shifts at a large number of
kinematic points, in both S-wave and D-wave, within the elastic region. The
technique is demonstrated with a calculation at a pion mass of 396 MeV, where
the elastic scattering is found to be well described by a scattering length
parameterisation.Comment: Tables of little-group CGCs in ancillary file; v2: minor changes to
reflect published versio
An eighth-century inscribed cross-slab in Dull, Perthshire
The discovery of a cross-inscribed slab with an inscription is described. Because of its importance it was decided to invite specialist comment on this piece of sculpture and to publish it in advance of the full report on the excavations. The form of the monument, its inscription and archaeological context are considered. The text appears to consist of a Gaelic personal name. The script is a form of geometrical lettering which can be dated to the opening quarter of the eighth century. The form of the cross has Columban associations which sit well with place-name and other evidence which points to Dull having been a monastery founded from Iona by c. AD 700
Domain Wall Fermions with Exact Chiral Symmetry
We show how the standard domain wall action can be simply modified to allow
arbitrarily exact chiral symmetry at finite fifth dimensional extent. We note
that the method can be used for both quenched and dynamical calculations. We
test the method using smooth and thermalized gauge field configurations. We
also make comparisons of the performance (cost) of the domain wall operator for
spectroscopy compared to other methods such as the overlap-Dirac operator and
find both methods are comparable in cost.Comment: revtex, 37 pages, 11 color postscript figure
Excited state baryon spectroscopy from lattice QCD
We present a calculation of the Nucleon and Delta excited state spectrum on
dynamical anisotropic clover lattices. A method for operator construction is
introduced that allows for the reliable identification of the continuum spins
of baryon states, overcoming the reduced symmetry of the cubic lattice. Using
this method, we are able to determine a spectrum of single-particle states for
spins up to and including J = 7/2, of both parities, the first time this has
been achieved in a lattice calculation. We find a spectrum of states
identifiable as admixtures of SU(6) x O(3) representations and a counting of
levels that is consistent with the non-relativistic constituent quark
model. This dense spectrum is incompatible with quark-diquark model solutions
to the "missing resonance problem" and shows no signs of parity doubling of
states.Comment: 29 pages, 18 figure
Mechanical strength and thermophysical properties of PM212: A high temperature self-lubricating powder metallurgy composite
A powder metallurgy composite, PM212, composed of metal bonded chromium carbide and solid lubricants is shown to be self-lubricating to a maximum application temperature of 900 C. The high temperature compressive strength, tensile strength, thermal expansion and thermal conductivity data needed to design PM212 sliding contact bearings and seals are reported for sintered and isostatically pressed (HIPed) versions of PM212. Other properties presented are room temperature density, hardness, and elastic modulus. In general, both versions appear to have adequate strength to be considered as sliding contact bearing materials, but the HIPed version, which is fully dense, is much stronger than the sintered version which contains about 20 percent pore volume. The sintered material is less costly to make, but the HIPed version is better where high compressive strength is important
- …