2,087 research outputs found

    Dyslexia: A case study

    Get PDF
    Dyslexia is a diagnosis commonly used to categorize many of the learning disabilities a child may have. Tests including the Wechsler Adult Intelligent Scale-Revised (WAIS-R), Woodcock-Johnson Psychoeducational Battery-Revised (the WJ-R), Dyslexia Determination Test and the Dyslexia Screener are used to isolate those thought to have dyslexia. Although a treatment for dyslexia is not available, optometrists can use vision therapy to increase the efficiency and stamina of the visual system. The goal of vision therapy is to refine those skills a patient does have to better compensate for the problems associated with dyslexia

    Two-way shape memory effect in (?+?) two-phase Co38Ni33Al29 single crystals

    Get PDF
    In the present study, it is shown that the aging in martensite under load is the effective way to create two-way shape memory effect at the martensite start temperature Ms=311 K with the reversible strain of 5 % along the [001]B2-direction in Co38Ni33Al29 single crystals with the minimum volume fraction fγ~1 % of large γ- phase precipitations. The increase of volume fraction up to fγ~5 % leads to the suppression of two-way shape memory effect, the reversible strain is less than 1 %

    Energy coupling of membrane transport and efficiency of sucrose dissimilation in yeast

    Get PDF
    Proton coupled transport of α-glucosides via Mal11 into Saccharomyces cerevisiae costs one ATP per imported molecule. Targeted mutation of all three acidic residues in the active site resulted in sugar uniport, but expression of these mutant transporters in yeast did not enable growth on sucrose. We then isolated six unique transporter variants of these mutants by directed evolution of yeast for growth on sucrose. In three variants, new acidic residues emerged near the active site that restored proton-coupled sucrose transport, whereas the other evolved transporters still catalysed sucrose uniport. The localization of mutations and transport properties of the mutants enabled us to propose a mechanistic model of proton-coupled sugar transport by Mal11. Cultivation of yeast strains expressing one of the sucrose uniporters in anaerobic, sucrose-limited chemostat cultures indicated an increase in the efficiency of sucrose dissimilation by 21% when additional changes in strain physiology were taken into account. We thus show that a combination of directed and evolutionary engineering results in more energy efficient sucrose transport, as a starting point to engineer yeast strains with increased yields for industrially relevant products

    Ixodes ricinus Tick Lipocalins: Identification, Cloning, Phylogenetic Analysis and Biochemical Characterization

    Get PDF
    BACKGROUND: During their blood meal, ticks secrete a wide variety of proteins that interfere with their host's defense mechanisms. Among these proteins, lipocalins play a major role in the modulation of the inflammatory response. METHODOLOGY/PRINCIPAL FINDINGS: Screening a cDNA library in association with RT-PCR and RACE methodologies allowed us to identify 14 new lipocalin genes in the salivary glands of the Ixodes ricinus hard tick. A computational in-depth structural analysis confirmed that LIRs belong to the lipocalin family. These proteins were called LIR for "Lipocalin from I. ricinus" and numbered from 1 to 14 (LIR1 to LIR14). According to their percentage identity/similarity, LIR proteins may be assigned to 6 distinct phylogenetic groups. The mature proteins have calculated pM and pI varying from 21.8 kDa to 37.2 kDa and from 4.45 to 9.57 respectively. In a western blot analysis, all recombinant LIRs appeared as a series of thin bands at 50-70 kDa, suggesting extensive glycosylation, which was experimentally confirmed by treatment with N-glycosidase F. In addition, the in vivo expression analysis of LIRs in I. ricinus, examined by RT-PCR, showed homogeneous expression profiles for certain phylogenetic groups and relatively heterogeneous profiles for other groups. Finally, we demonstrated that LIR6 codes for a protein that specifically binds leukotriene B4. CONCLUSIONS/SIGNIFICANCE: This work confirms that, regarding their biochemical properties, expression profile, and sequence signature, lipocalins in Ixodes hard tick genus, and more specifically in the Ixodes ricinus species, are segregated into distinct phylogenetic groups suggesting potential distinct function. This was particularly demonstrated by the ability of LIR6 to scavenge leukotriene B4. The other LIRs did not bind any of the ligands tested, such as 5-hydroxytryptamine, ADP, norepinephrine, platelet activating factor, prostaglandins D2 and E2, and finally leukotrienes B4 and C4.Journal ArticleResearch Support, Non-U.S. Gov'tSCOPUS: ar.jinfo:eu-repo/semantics/publishe

    Weak Acid Permeation in Synthetic Lipid Vesicles and Across the Yeast Plasma Membrane

    Get PDF
    We present a fluorescence-based approach for determination of the permeability of small molecules across the membranes of lipid vesicles and living cells. With properly designed experiments, the method allows us to assess the membrane physical properties both in vitro and in vivo. We find that the permeability of weak acids increases in the order of benzoic > acetic > formic > lactic, both in synthetic lipid vesicles and the plasma membrane of Saccharomyces cerevisiae, but the permeability is much lower in yeast (one to two orders of magnitude). We observe a relation between the molecule permeability and the saturation of the lipid acyl chain (i.e., lipid packing) in the synthetic lipid vesicles. By analyzing wild-type yeast and a manifold knockout strain lacking all putative lactic acid transporters, we conclude that the yeast plasma membrane is impermeable to lactic acid on timescales up to ∼2.5 h.BT/Industrial Microbiolog

    The transcriptome of the salivary glands of the female western black-legged tick \u3cem\u3eIxodes pacificus\u3c/em\u3e (Acari: Ixodidae)

    Get PDF
    Sequencing of an Ixodes pacificus salivary gland cDNA library yielded 1068 sequences with an average undetermined nucleotide of 1.9% and an average length of 487 base pairs. Assembly of the expressed sequence tags yielded 557 contigs, 138 of which appear to code for secreted peptides or proteins based on translation of a putative signal peptide. Based on the BLASTX similarity of these contigs to 66 matches of Ixodes scapularis peptide sequences, only 58% sequence identity was found, indicating a rapid divergence of salivary proteins as observed previously for mosquito and triatomine bug salivary proteins. Here we report 106 mostly full-length sequences that clustered in 16 different families: Basic-tail proteins rich in lysine in the carboxy-terminal, Kunitz-containing proteins (monolaris, ixolaris and penthalaris families), proline-rich peptides, 5-, 9.4- and 18.7-kDa proteins of unknown functions, in addition to metalloproteases (class PIII-like) similar to reprolysins. We also have found a family of disintegrins, named ixodegrins that display homology to variabilin, a GPIIb/IIIa antagonist from the tick Dermacentor variabilis. In addition, we describe peptides (here named ixostatins) that display remarkable similarities to the cysteine-rich domain of ADAMST-4 (aggrecanase). Many molecules were assigned in the lipocalin family (histamine-binding proteins); others appear to be involved in oxidant metabolism, and still others were similar to ixodid proteins such as the anticomplement ISAC. We also identified for the first time a neuropeptide-like protein (nlp-31) with GGY repeats that may have antimicrobial activity. In addition, 16 novel proteins without significant similarities to other tick proteins and 37 housekeeping proteins that may be useful for phylogenetic studies are described. Some of these proteins may be useful for studying vascular biology or the immune system, for vaccine development, or as immunoreagents to detect prior exposure to ticks

    Expression of an Arc-Immunoreactive Protein in the Adult Zebrafish Brain Increases in Response to a Novel Environment

    Get PDF
    Zebrafish are a powerful research tool in the field of neuroscience, offering several logistical and physiological advantages over rodents as a research model. However, the molecular dynamics of this model organism, especially with regards to learning and memory, are scarcely known. The current study explored the zebrafish brain for the presence of a protein bearing a similar function to the activity-regulated, cytoskeleton-associated protein (Arc), a critical player in synaptic plasticity. The adult zebrafish brain was found to express a protein with immunoreactivity against the anti-Arc antibody H-300. Immunoreactivity was detected ubiquitously, especially in areas known as adult progenitor cell zones. The protein, termed Arc-immunoreactive protein (AIP), increased in the telencephalon but not the optic tectum 60 min after exposure to a novel environment. Epileptiform brain activity, however, did not induce AIP expression. Evidence presented herein suggests AIP may be the neuropeptide Y receptor rather than a zebrafish homolog of Arc
    corecore