1,103 research outputs found

    Pultrusion process characterization

    Get PDF
    Pultrusion is a process through which high-modulus, lightweight composite structural members such as beams, truss components, stiffeners, etc., are manufactured. The pultrusion process, though a well-developed processing art, lacks a fundamental scientific understanding. The objective here was to determine, both experimentally and analytically, the process parameters most important in characterizing and optimizing the pultrusion of uniaxial fibers. The effects of process parameter interactions were experimentally examined as a function of the pultruded product properties. A numerical description based on these experimental results was developed. An analytical model of the pultrusion process was also developed. The objective of the modeling effort was the formulation of a two-dimensional heat transfer model and development of solutions for the governing differential equations using the finite element method

    The empirical accuracy of uncertain inference models

    Get PDF
    Uncertainty is a pervasive feature of the domains in which expert systems are designed to function. Research design to test uncertain inference methods for accuracy and robustness, in accordance with standard engineering practice is reviewed. Several studies were conducted to assess how well various methods perform on problems constructed so that correct answers are known, and to find out what underlying features of a problem cause strong or weak performance. For each method studied, situations were identified in which performance deteriorates dramatically. Over a broad range of problems, some well known methods do only about as well as a simple linear regression model, and often much worse than a simple independence probability model. The results indicate that some commercially available expert system shells should be used with caution, because the uncertain inference models that they implement can yield rather inaccurate results

    On the Correlation of Torque and Luminosity in GX 1+4

    Get PDF
    Over five years of daily hard X-ray (>20 keV) monitoring of the 2-min accretion-powered pulsar GX 1+4 with the Compton Gamma Ray Observatory/BATSE large-area detectors has found nearly continuous rapid spin-down, interrupted by a bright 200-d spin-up episode. During spin-down, the torque becomes more negative as the luminosity increases (assuming that the 20-60 keV pulsed flux traces bolometric luminosity), the opposite of what is predicted by standard accretion torque theory. No changes in the shape of the 20-100 keV pulsed energy spectrum were detected, so that a very drastic change in the spectrum below 20 keV or the pulsed fraction would be required to make the 20-60 keV pulsed flux a poor luminosity tracer. These are the first observations which flatly contradict standard magnetic disk accretion theory, and they may have important implications for understanding the spin evolution of X-ray binaries, cataclysmic variables, and protostars. We briefly discuss the possibility that GX 1+4 may be accreting from a retrograde disk during spin-down, as previously suggested.Comment: 10 pages including 3 PS figures. To appear in ApJ Letter

    Beta-actin mRNA localization is regulated by signal transduction mechanisms

    Get PDF
    Beta-actin mRNA is localized in the leading lamellae of chicken embryo fibroblasts (CEFs) (Lawrence, J., and R. Singer. 1986. Cell. 45:407-415), close to where actin polymerization in the lamellipodia drives cellular motility. During serum starvation beta-actin mRNA becomes diffuse and non-localized. Addition of FCS induces a rapid (within 2-5 min) redistribution of beta-actin mRNA into the leading lamellae. A similar redistribution was seen with PDGF, a fibroblast chemotactic factor. PDGF-induced beta-actin mRNA redistribution was inhibited by the tyrosine kinase inhibitor herbimycin, indicating that this process requires intact tyrosine kinase activity, similar to actin filament polymerization and chemotaxis. Lysophosphatidic acid, which has been shown to rapidly induce actin stress fiber formation (Ridley, A., and A. Hall. 1992. Cell. 790:389-399), also increases peripheral beta-actin mRNA localization within minutes. This suggests that actin polymerization and mRNA localization may be regulated by similar signaling pathways. Additionally, activators or inhibitors of kinase A or C can also delocalize steady-state beta-actin mRNA in cells grown in serum, and can inhibit the serum induction of peripherally localized beta-actin mRNA in serum-starved CEFs. These data show that physiologically relevant extracellular factors operating through a signal transduction pathway can regulate spatial sites of actin protein synthesis, which may in turn affect cellular polarity and motility

    Comparative biochemical analysis of UHRF proteins reveals molecular mechanisms that uncouple UHRF2 from DNA methylation maintenance

    Get PDF
    UHRF1 is a histone- and DNA-binding E3 ubiquitin ligase that functions with DNMT1 to maintain mammalian DNA methylation. UHRF1 facilitates DNMT1 recruitment to replicating chromatin through a coordinated mechanism involving histone and DNA recognition and histone ubiquitination. UHRF2 shares structural homology with UHRF1, but surprisingly lacks functional redundancy to facilitate DNA methylation maintenance. Molecular mechanisms uncoupling UHRF2 from DNA methylation maintenance are poorly defined. Through comprehensive and comparative biochemical analysis of recombinant human UHRF1 and UHRF2 reader and writer activities, we reveal conserved modes of histone PTM recognition but divergent DNA binding properties. While UHRF1 and UHRF2 diverge in their affinities toward hemi-methylated DNA, we surprisingly show that both hemi-methylated and hemi-hydroxymethylated DNA oligonucleotides stimulate UHRF2 ubiquitin ligase activity toward histone H3 peptide substrates. This is the first example of an E3 ligase allosterically regulated by DNA hydroxymethylation. However, UHRF2 is not a productive histone E3 ligase toward purified mononucleosomes, suggesting UHRF2 has an intra-domain architecture distinct from UHRF1 that is conformationally constrained when bound to chromatin. Collectively, our studies reveal that uncoupling of UHRF2 from the DNA methylation maintenance program is linked to differences in the molecular readout of chromatin signatures that connect UHRF1 to ubiquitination of histone H3
    corecore