17 research outputs found

    Comparison of 2D and 3D calculation of left ventricular torsion as circumferential-longitudinal shear angle using cardiovascular magnetic resonance tagging

    Get PDF
    <p>Abstract</p> <p>Purpose</p> <p>To compare left ventricular (LV) torsion represented as the circumferential-longitudinal (CL) shear angle between 2D and 3D quantification, using cardiovascular magnetic resonance (CMR).</p> <p>Methods</p> <p>CMR tagging was performed in six healthy volunteers. From this, LV torsion was calculated using a 2D and a 3D method. The cross-correlation between both methods was evaluated and comparisons were made using Bland-Altman analysis.</p> <p>Results</p> <p>The cross-correlation between the curves was <it>r</it><sup>2 </sup>= 0.97 ± 0.02. No significant time-delay was observed between the curves. Bland-Altman analysis revealed a significant positive linear relationship between the difference and the average value of both analysis methods, with the 2D results showing larger values than the 3D. The difference between both methods can be explained by the definition of the 2D method.</p> <p>Conclusion</p> <p>LV torsion represented as CL shear quantified by the 2D and 3D analysis methods are strongly related. Therefore, it is suggested to use the faster 2D method for torsion calculation.</p

    Steady-state free precession with myocardial tagging: CSPAMM in a single breathhold

    No full text
    A method is presented that combines steady-state free precession (SSFP) cine imaging with myocardial tagging. Before the tagging preparation at each ECG-R wave, the steady-state magnetization is stored as longitudinal magnetization by an α/2 flip-back pulse. Imaging is continued immediately after tagging preparation, using linearly increasing startup angles (LISA) with a rampup over 10 pulses. Interleaved segmented k-space ordering is used to prevent artifacts from the increasing signal during the LISA rampup. First, this LISA-SSFP method was evaluated regarding ghost artifacts from the steady-state interruption by comparing LISA with an α/2 startup method. Next, LISA-SSFP was compared with spoiled gradient echo (SGRE) imaging, regarding tag contrast-to-noise ratio and tag persistence. The measurements were performed in phantoms and in six subjects applying breathhold cine imaging with tagging (temporal resolution 51 ms). The results show that ghost artifacts are negligible for the LISA method. Compared to the SGRE reference, LISA-SSFP was two times faster, with a slightly better tag contrast-to-noise. Additionally, the tags persisted 126 ms longer with LISA-SSFP than with SGRE imaging. The high efficiency of LISA-SSFP enables the acquisition of complementary tagged (CSPAMM) images in a single breathhold

    Improved harmonic phase myocardial strain maps

    No full text
    Magnetic resonance tagging has proven a valuable tool in the quantification of myocardial deformation. However, time-consuming postprocessing has discouraged the use of this technique in clinical routine. Recently, the harmonic phase (HARP) technique was introduced for automatic calculation of myocardial strain maps from tagged images. In this study, a comparison was made between HARP instantaneous strain maps calculated from single tagged images (SPAMM) and those calculated from subtracted tagged images (CSPAMM). The performance was quantified using simulated images of an incompressible cylinder in the 'end-systolic' state with realistic image contrast and noise. The error in the second principal stretch ratio was 0.009 ± 0.032 (mean ± SD) for the SPAMM acquisition, and 0.007 ± 0.016 for CSPAMM at identical contrast-to-noise ratio. Furthermore, differences between the methods were illustrated with in vivo strain maps. Those calculated from CSPAMM images showed fewer artifacts and were less sensitive to the choice of cut-off frequencies in the HARP band-pass filter. A prerequisite for the method to become practical is that the CSPAMM images should be acquired in a single breathhold

    Three-dimensional myocardial strains at end-systole and during diastole in the left ventricle of normal humans

    No full text
    This paper presents the three-dimensional strains in the normal human left ventricle (LV) at end-systole and during diastole. Magnetic resonance tissue tagging was used to measure strain in the left-ventricular heart wall in 10 healthy volunteers aged between 28 and 61 years. The three-dimensional motion was calculated from the displacement of marker points in short- and long-axis cine images, with a time resolution of 30 msec. Homogeneous strain analysis of small tetrahedrons was used to calculate deformation in 18 regions of the LV over a time span of 300msec starting at end systole. End-systolic radial strain was largest near the heart base, and circumferential and longitudinal strains were largest near the apex. During diastole, the circumferential-longitudinal shear strain (associated with LV torsion) was found to recover earlier than the axial strains. Assessment of three-dimensional diastolic strain is possible with MR tagging. Comparison of patient strain against normal strain may permit early detection of regional diastolic dysfunction
    corecore