875 research outputs found

    Continuous repetition rate tuning with timing window independent self-seeding of a gain-switched Fabry-PÉrot Laser

    Get PDF
    In this work, we propose a novel self-seeding technique that yields timing window independent operation allowing continuous repetition rate tuning of the self-seeded gain-switched (SSGS) laser. This is achieved by employing a highly linearly chirped fiber Bragg grating (LC FBG) as a wavelength selective element. The reflected gain-switched pulses are dispersed to such an extent, that temporal overlap occurs between them. This overlap creates a pseudo continues wave like signal that is re-injected into the gain-switched laser

    Wavelength tunable lasers in future optical communication systems

    Get PDF
    Monolithic tunable lasers (TL) have been an important component in dense wavelength division multiplexed (DWDM) systems mainly because of their ability to reduce inventory costs associated with different part numbers for fixed wavelength distributed feedback (DFB) lasers. Moreover, the use of wavelength agile laser diodes in DWDM networks has gained a lot of interest in recent years, due to emerging new applications such as optical switching and routing, which require fast switching lasers in the nanosecond regime (Coldren et al., 2000). Employment of such lasers as tunable transmitters in wavelength packet switched (WPS) networks is one of the possible applications of these devices. In such systems, the information to be transmitted could be encoded onto a destination dependent wavelength and the routing of traffic could be performed on a packet-by-packet basis. The utilization of TLs in an optical switching and routing environment would put stringent requirements on its performance. This would include increased tuning range, high side mode suppression ratio (SMSR), reduced switching time and excellent wavelength stability. The sampled-grating distributed Bragg reflector (SG DBR) TL proves to be an ideal candidate, due to its large tuning range (40 nm), high output power (10 dBm), high side mode suppression ratio (SMSR > 30 dB) and simplicity of integration

    Frequency drift characterisation of directly modulated SGDBR tunable lasers

    Get PDF
    Tunable Lasers (TL) are rapidly becoming key components in Dense Wavelength Division Multiplexed (DWDM) systems, packet switched schemes and access networks. They are being introduced as alternatives to fixed wavelength sources to provide a greater degree of flexibility and to reduce large inventory [1]. The SGDBR laser is an ideal candidate due to its large tuning range (40 nm), high output power (10 dBm), large Side Mode Suppression Ratio (>30 dB) and its ability to be monolithically integrated with other semiconductor devices. Such integration could comprise of a Semiconductor Optical Amplifier (SOA), allowing for extended reach tunable operation, in a very compact and low cost footprint [2]. Thus far, external modulation has been the most popular modulation technique used with TLs. However, the addition of the modulator introduces loss to the transmitted signal due to high insertion and coupling losses. Addressing these short comings would result in increased cost and complexity of the transmitter. Alternatively, direct modulation is one of the simplest and cost efficient ways to modulate the lightwave signal. Hence, it is rational to investigate the performance of a directly modulated SGDBR laser in order to verify its usefulness in a WDM based access network scenario. Previous work in this area has mainly focused on bandwidth characterisation and transmission experiments [3, 4]. In this paper, we characterise the frequency drift associated with a directly modulated SGDBR laser incorporating a wavelength locker. Focus is placed on investigating the magnitude and settling time of this drift. In addition, we also demonstrate how the frequency drift has a detrimental effect on DWDM system performance when the modulated channel is passed through a narrow Optical Band-Pass Filter (OBPF) centred at the target emission frequency

    Triple-wavelength fiber ring laser based on a hybrid gain medium actively mode-locked at 10 GHz

    Get PDF
    A fiber ring laser based on a hybrid gain medium that produces three simultaneously mode-locked wavelength channels is presented. The lithium niobate based modulator used to actively mode-lock the laser cavity at 10 GHz is birefringence compensated to reduce its polarization sensitivity. A Lyot filter defines the lasers multiwavelength spectrum which has a wavelength spacing of 1 nm. The polarization sensitive nature of the laser cavity and its affect on the performance of the laser is discussed

    Characterization of wavelength tunable lasers for future optical communication systems

    Get PDF
    The use of tunable lasers (TL) in dense wavelength division multiplexed (DWDM) networks for optical switching, routing and networking has gained a lot of interest in recent years. Employment of such TLs as tunable transmitters in wavelength packet switched (WPS) networks is one of the possible applications of these devices. In such systems, the information to be transmitted could be encoded onto a destination dependent wavelength and the routing of traffic could be performed on a packet-by-packet basis. The authors investigate the possibility of using TLs in DWDM WPS networks by focusing on the characterisation of the instantaneous frequency drift of a TL due to wavelength tuning and direct modulation. Characterization of the linewidth of the TLs is also presented to verify the feasibility of using TLs in systems employing advanced modulation formats

    Characterization of frequency drift of sampled-grating DBR laser module under direct modulation

    Get PDF
    The authors demonstrate the drift in frequency of a static sampled-grating distributed Bragg reflector (SG DBR) laser module when it is subjected to direct modulation. The magnitude of drift and its settling time is characterized as a function of the index of modulation. Results show that when the directly modulated SG DBR is optically filtered, as in a dense wavelength- division- multiplexed system, a power penalty of 6.7 dB is incurred in comparison to the unfiltered case

    On the Correlation of Torque and Luminosity in GX 1+4

    Get PDF
    Over five years of daily hard X-ray (>20 keV) monitoring of the 2-min accretion-powered pulsar GX 1+4 with the Compton Gamma Ray Observatory/BATSE large-area detectors has found nearly continuous rapid spin-down, interrupted by a bright 200-d spin-up episode. During spin-down, the torque becomes more negative as the luminosity increases (assuming that the 20-60 keV pulsed flux traces bolometric luminosity), the opposite of what is predicted by standard accretion torque theory. No changes in the shape of the 20-100 keV pulsed energy spectrum were detected, so that a very drastic change in the spectrum below 20 keV or the pulsed fraction would be required to make the 20-60 keV pulsed flux a poor luminosity tracer. These are the first observations which flatly contradict standard magnetic disk accretion theory, and they may have important implications for understanding the spin evolution of X-ray binaries, cataclysmic variables, and protostars. We briefly discuss the possibility that GX 1+4 may be accreting from a retrograde disk during spin-down, as previously suggested.Comment: 10 pages including 3 PS figures. To appear in ApJ Letter

    Nephrogenic systemic fibrosis risk and liver disease.

    Get PDF
    Objective. Evaluate the incidence of nephrogenic systemic fibrosis (NSF) in patients with liver disease in the peritransplant period. Materials and Methods. This IRB approved study retrospectively reviewed patients requiring transplantation for cirrhosis, hepatocellular carcinoma (HCC), or both from 2003 to 2013. Records were reviewed identifying those having gadolinium enhanced MRI within 1 year of posttransplantation to document degree of liver disease, renal disease, and evidence for NSF. Results. Gadolinium-enhanced MRI was performed on 312 of 837 patients, including 23 with severe renal failure (GFR < 30 mL/min/1.73 cm(2)) and 289 with GFR > 30. Two of 23 patients with renal failure developed NSF compared to zero NSF cases in 289 patients with GFR > 30 (0/289; P < 0.003). High dose gadodiamide was used in the two NSF cases. There was no increased incidence of NSF with severe liver disease (1/71) compared to nonsevere liver disease (1/241; P = 0.412). Conclusion. Renal disease is a risk factor for NSF, but in our small sample our evidence suggests liver disease is not an additional risk factor, especially if a low-risk gadolinium agent is used. Noting that not all patients received high-risk gadolinium, a larger study focusing on patients receiving high-risk gadolinium is needed to further evaluate NSF risk in liver disease in the peritransplant period
    • 

    corecore