210 research outputs found

    Ultrafast laser inscription of mid-IR directional couplers for stellar interferometry

    Get PDF
    We report the ultrafast laser fabrication and mid-IR characterization (3.39 microns) of four-port evanescent field directional couplers. The couplers were fabricated in a commercial gallium lanthanum sulphide glass substrate using sub-picosecond laser pulses of 1030 nm light. Straight waveguides inscribed using optimal fabrication parameters were found to exhibit propagation losses of 0.8 dB/cm. A series of couplers were inscribed with different interaction lengths, and we demonstrate power splitting ratios of between 8% and 99% for mid-IR light with a wavelength of 3.39 microns. These results clearly demonstrate that ultrafast laser inscription can be used to fabricate high quality evanescent field couplers for future applications in astronomical interferometry.Comment: 4 pages, 4 figure

    Integrated optics prototype beam combiner for long baseline interferometry in the L and M bands

    Get PDF
    In the last few years, integrated optics (IO) beam combiners have facilitated the emergence of 4-telescope interferometers such as PIONIER or GRAVITY, boosting the imaging capabilities of the VLTI. However, the spectral range beyond 2.2microns is not ideally covered by the conventional silica based IO. Here, we propose to consider new laser-written IO prototypes made of GLS glasses, a material that permits access to the mid-infrared spectral regime. Our goal is to conduct a full characterization of our mid-IR IO 2-telescope coupler in order to measure the performance levels directly relevant for long-baseline interferometry. We focus in particular on the exploitation of the L and M astronomical bands. We use a dedicated Michelson-interferometer setup to perform Fourier Transform spectroscopy on the coupler and measure its broadband interferometric performance. We also analyze the polarization properties of the coupler, the differential dispersion and phase degradation as well as the modal behavior and the total throughput. We measure broadband interferometric contrasts of 94.9% and 92.1% for unpolarized light in the L and M bands. Spectrally integrated splitting ratios are close to 50% but show chromatic dependence over the considered bandwidths. Additionally, the phase variation due to the combiner is measured and does not exceed 0.04rad and 0.07rad across the band L and M band, respectively. The total throughput of the coupler including Fresnel and injection losses from free-space is 25.4%. The laser-written IO GLS prototype combiners prove to be a reliable technological solution with promising performance for mid-infrared long-baseline interferometry. In the next steps, we will consider more advanced optical functions as well as a fiber-fed input and revise the optical design parameters in order the further enhance the total throughput and achromatic behavior

    Selecting and planning high country reservoirs for recreation within a multipurpose management framework

    Get PDF
    Submitted to Office of Water Research and Technology, U.S. Dept. of Interior, June 1975.Bibliography: pages 141-145.OWRT project no. B-132-COLO

    Forces and trauma associated with minimally invasive image-guided cochlear implantation

    Get PDF
    Objective. Minimally invasive image-guided cochlear implantation (CI) utilizes a patient-customized microstereotactic frame to access the cochlea via a single drill-pass. We investigate the average force and trauma associated with the insertion of lateral wall CI electrodes using this technique. Study Design. Assessment using cadaveric temporal bones. Setting. Laboratory setup. Subjects and Methods. Microstereotactic frames for 6 fresh cadaveric temporal bones were built using CT scans to determine an optimal drill path following which drilling was performed. CI electrodes were inserted using surgical forceps to manually advance the CI electrode array, via the drilled tunnel, into the cochlea. Forces were recorded using a 6-axis load sensor placed under the temporal bone during the insertion of lateral wall electrode arrays (2 each of Nucleus CI422, MED-EL standard, and modified MED-EL electrodes with stiffeners). Tissue histology was performed by microdissection of the otic capsule and apical photo documentation of electrode position and intracochlear tissue. Results. After drilling, CT scanning demonstrated successful access to cochlea in all 6 bones. Average insertion forces ranged from 0.009 to 0.078 N. Peak forces were in the range of 0.056 to 0.469 N. Tissue histology showed complete scala tympani insertion in 5 specimens and scala vestibuli insertion in the remaining specimen with depth of insertion ranging from 360° to 600°. No intracochlear trauma was identified. Conclusion. The use of lateral wall electrodes with the minimally invasive image-guided CI approach was associated with insertion forces comparable to traditional CI surgery. Deep insertions were obtained without identifiable trauma. © American Academy of Otolaryngology-Head and Neck Surgery Foundation 2014

    Short-term effects of video gaming on brain response during working memory performance

    Get PDF
    Breaks filled with different break activities often interrupt cognitive performance in everyday life. Previous studies have reported that both enhancing and deteriorating effects on challenging ongoing tasks such as working memory updating, depend on the type of break activity. However, neural mechanisms of these break-related alterations in working memory performance have not been studied, to date. Therefore, we conducted a brain imaging study to identify the neurobiological correlates of effects on the n-back working memory task related to different break activities. Before performing the n-back task in the magnetic resonance imaging (MRI) scanner, young adults were exposed to break activities in the MRI scanner involving (i) eyes-open resting, (ii) listening to music, and (iii) playing the video game “Angry Birds”. Heart rate was measured by a pulse oximeter during the experiment. We found that increased heart rate during gaming as well as decreased relaxation levels after a video gaming break was related to poorer n-back task performance, as compared to listening to music. On the neural level, video gaming reduced supplementary motor area activation during working memory performance. These results may indicate that video gaming during a break may affect working memory performance by interfering with arousal state and frontal cognitive control functions

    Advances in the Development of Mid-Infrared Integrated Devices for Interferometric Arrays

    Full text link
    This article reports the advances on the development of mid-infrared integrated optics for stellar interferometry. The devices are fabricated by laser writing techniques on chalcogenide glasses. Laboratory characterizaton is reported and analyzed.Comment: 12 pages, 9 figures, SPIE Astronomical Telescopes and Instrumentatio
    corecore