2,248 research outputs found

    Critical Shifts in Trace Metal Transport and Remediation Performance under Future Low River Flows

    Get PDF
    Exceptionally low river flows are predicted to become more frequent and more severe across many global regions as a consequence of climate change. Investigations of trace metal transport dynamics across streamflows reveal stark changes in water chemistry, metal transformation processes, and remediation effectiveness under exceptionally low-flow conditions. High spatial resolution hydrological and water quality datasets indicate that metal-rich groundwater will exert a greater control on stream water chemistry and metal concentrations because of climate change. This is because the proportion of stream water sourced from mined areas and mineralized strata will increase under predicted future low-flow scenarios (from 25% under Q45 flow to 66% under Q99 flow in this study). However, mineral speciation modelling indicates that changes in stream pH and hydraulic conditions at low flow will decrease aqueous metal transport and increase sediment metal concentrations by enhancing metal sorption directly to streambed sediments. Solute transport modelling further demonstrates how increases in the importance of metal-rich diffuse groundwater sources at low flow could minimize the benefits of point source metal contamination treatment. Understanding metal transport dynamics under exceptionally low flows, as well as under high flows, is crucial to evaluate ecosystem service provision and remediation effectiveness in watersheds under future climate change scenarios

    Phase field approach to optimal packing problems and related Cheeger clusters

    Full text link
    In a fixed domain of RN\Bbb{R}^N we study the asymptotic behaviour of optimal clusters associated to α\alpha-Cheeger constants and natural energies like the sum or maximum: we prove that, as the parameter α\alpha converges to the "critical" value (N1N)+\Big (\frac{N-1}{N}\Big ) _+, optimal Cheeger clusters converge to solutions of different packing problems for balls, depending on the energy under consideration. As well, we propose an efficient phase field approach based on a multiphase Gamma convergence result of Modica-Mortola type, in order to compute α\alpha-Cheeger constants, optimal clusters and, as a consequence of the asymptotic result, optimal packings. Numerical experiments are carried over in two and three space dimensions

    Genetic Risk Score to Identify Risk of Venous Thromboembolism in Patients With Cardiometabolic Disease

    Get PDF
    BACKGROUND –: Venous thromboembolism (VTE) is a major cause of cardiovascular morbidity and mortality with a known genetic contribution. We tested the performance of a genetic risk score (GRS) for its ability to predict VTE in three cohorts of patients with cardiometabolic disease. METHODS –: We included patients from the FOURIER, PEGASUS-TIMI 54, and SAVOR-TIMI 53 trials (history of atherosclerosis, myocardial infarction, and diabetes, respectively) who consented for genetic testing and were not on baseline anticoagulation. We calculated a VTE GRS based on 297 SNPs with established genome-wide significance. Patients were divided into tertiles of genetic risk. Cox proportional hazards models were used to calculate hazard ratios for VTE across genetic risk groups. The polygenic risk score was compared to available clinical risk factors (age, obesity, smoking, history of heart failure, diabetes) and common monogenic mutations. RESULTS –: A total of 29,663 patients were included in the analysis with a median follow-up of 2.4 years, of whom 174 had a VTE event. There was a significantly increased gradient of risk across VTE genetic risk tertiles (p-trend <0.0001). After adjustment for clinical risk factors, patients in the intermediate and high genetic risk groups had a 1.88-fold (95% CI 1.23–2.89, p=0.004) and 2.70-fold (95% CI 1.81–4.06, p<0.0001) higher risk of VTE compared to patients with low genetic risk. In a continuous model adjusted for clinical risk factors, each standard deviation increase in the GRS was associated with a 47% (95% CI 29–68) increased risk of VTE (p<0.0001). CONCLUSIONS –: In a broad spectrum of patients with cardiometabolic disease, a polygenic risk score is a strong, independent predictor of VTE after accounting for available clinical risk factors, identifying 1/3 of patients who have a risk of VTE comparable to that seen with established monogenic thrombophilia

    A novel ESR2 frameshift mutation predisposes to medullary thyroid carcinoma and causes inappropriate RET expression

    Get PDF

    Deregulation of DUX4 and ERG in acute lymphoblastic leukemia

    Get PDF
    Chromosomal rearrangements deregulating hematopoietic transcription factors are common in acute lymphoblastic leukemia (ALL).1,2 Here, we show that deregulation of the homeobox transcription factor gene DUX4 and the ETS transcription factor gene ERG are hallmarks of a subtype of B-progenitor ALL that comprises up to 7% of B-ALL. DUX4 rearrangement and overexpression was present in all cases, and was accompanied by transcriptional deregulation of ERG, expression of a novel ERG isoform, ERGalt, and frequent ERG deletion. ERGalt utilizes a non-canonical first exon whose transcription was initiated by DUX4 binding. ERGalt retains the DNA-binding and transactivating domains of ERG, but inhibits wild-type ERG transcriptional activity and is transforming. These results illustrate a unique paradigm of transcription factor deregulation in leukemia, in which DUX4 deregulation results in loss-of-function of ERG, either by deletion or induction of expression of an isoform that is a dominant negative inhibitor of wild type ERG function
    corecore