680 research outputs found

    Implantable modular hydrogel for salivary gland restoration

    Get PDF
    Implantable modular hydrogels to aid in salivary gland restoration and associated methods are provided. In one embodiment, the present disclosure provides for a hydrogel network comprising: a hyaluronic acid macromer crosslinked with a multiblock copolymer

    Topological Censorship

    Full text link
    All three-manifolds are known to occur as Cauchy surfaces of asymptotically flat vacuum spacetimes and of spacetimes with positive-energy sources. We prove here the conjecture that general relativity does not allow an observer to probe the topology of spacetime: any topological structure collapses too quickly to allow light to traverse it. More precisely, in a globally hyperbolic, asymptotically flat spacetime satisfying the null energy condition, every causal curve from \scri^- to {\scri}^+ is homotopic to a topologically trivial curve from \scri^- to {\scri}^+. (If the Poincar\'e conjecture is false, the theorem does not prevent one from probing fake 3-spheres).Comment: 12 pages, REVTEX; 1 postscript figure in a separate uuencoded file. Our earlier version (PRL 71, 1486 (1993)) contained a secondary result, mistakenly attributed to Schoen and Yau, regarding ``passive topological censorship'' of a certain class of topologies. As Gregory Burnett has pointed out (gr-qc/9504012), this secondary result is false. The main topological censorship theorem is unaffected by the erro

    Interaction of synchronized dynamics in cortical and subcortical circuits in Parkinson’s disease

    Get PDF
    poster abstractParkinson’s disease pathophysiology is marked by increased oscillatory and synchronous activity in the beta frequency band in cortical and basal ganglia circuits. This study explores the functional connections between synchronized dynamics of cortical areas and dynamics of subcortical areas in Parkinson’s disease. We simultaneously recorded neuronal units (spikes) and local field potentials (LFP) from subthalamic nucleus (STN), and electroencephalograms (EEGs) from the scalp in parkinsonian patients and analyzed the correlation between the time-courses of the spike-LFP synchronization and inter-electrode EEG synchronization. We found the (noninvasively obtained) time-course of the synchrony strength between EEG electrodes and the (invasively obtained) time-course of the synchrony between spiking unit and LFP in STN to be weakly, but significantly correlated with each other. This correlation is largest for the bilateral motor EEG synchronization followed by bilateral frontal EEG synchronization. Our observations suggest that there may be multiple functional modes by which the cortical and basal ganglia circuits interact with each other in Parkinson’s disease: not only synchronization may be observed between some areas in cortex and the basal ganglia, but also synchronization within cortex and within basal ganglia may be related, suggesting potentially more global way of functional interaction. More coherent dynamics in one brain region may modulate or activate the dynamics of another brain region in a more powerful way causing correlations between changes in synchrony strength in both regions

    An Assessment of Water Sources Related to Major Systems of Agricultural Land Use in Kentucky

    Get PDF
    Recent years have seen a greater public concern about the quality of the nation\u27s water resources. While initial concerns targeted point source pollution, the emphasis in recent years has shifted to non-point source pollution, including the effect of general practices used by fanners in agricultural production systems. Since there was no reliable data base on such effects for Kentucky, the state\u27s General Assembly passed legislation during its 1990 session directing the University ofKentucky\u27s College of Agriculture (UK.CA) to assess the effect of agricultural practices on quality of the state\u27s waters. As part of the efforts undertaken by the UKCA in this regard, an assessment was made of water sources in major agricultural areas to determine the current level of water quality associated with agricultural practices in those areas. This information was needed to evaluate the question of concern: Do nonpoint agricultural practices such as fertilizer and herbicide use and grazing of pastures by livestock pose a threat to the quality of water potentially serving as human drinking water sources

    Cortex – basal ganglia synchronization in Parkinson’s disease

    Get PDF
    poster abstractIncreased synchrony in the beta band in cortico-basal ganglia circuits is well described in patients with PD. Less is known, however, about how these abnormal firing patterns are correlated across these brain regions. In this study we investigated how this intra-operative data recorded from STN correlates with scalp recorded EEG. Intraoperative single unit recordings and LFPs were obtained from STN and scalp EEG recordings were collected from four electrodes positioned over prefrontal and motor areas. We computed the STN spike-LFP (Local Filed Potential) phase synchrony over short temporal windows as it fluctuates in time. We also computed the EEG phase synchrony index time series for all 6 pairs of EEG electrodes. Next we explored cross-correlation between the two synchrony level time-series of the spike-LFP vs. EEG pairs. EEG synchrony was found to be correlated with spike-LFP synchrony. Correlation between surface EEG and STN was strongest for ipsilateral EEG and STN recordings. Spike-LFP synchronization is believed to characterize the input-output characteristics of STN dynamics and to be strongly relevant to the expression of motor symptoms. Our results indicate that non-invasive and relatively simple EEG recordings retain some information about synchronous dynamics in the subcortical regions, which can be access only in an invasive manner during functional neurosurgical procedures

    Molecular Phylogenetics and the Diversification of Hummingbirds

    Get PDF
    SummaryThe tempo of species diversification in large clades can reveal fundamental evolutionary mechanisms that operate on large temporal and spatial scales [1–4]. Hummingbirds have radiated into a diverse assemblage of specialized nectarivores comprising 338 species, but their evolutionary history has not, until now, been comprehensively explored. We studied hummingbird diversification by estimating a time-calibrated phylogeny for 284 hummingbird species, demonstrating that hummingbirds invaded South America by ∼22 million years ago, and subsequently diversified into nine principal clades (see [5–7]). Using ancestral state reconstruction and diversification analyses, we (1) estimate the age of the crown-group hummingbird assemblage, (2) investigate the timing and patterns of lineage accumulation for hummingbirds overall and regionally, and (3) evaluate the role of Andean uplift in hummingbird speciation. Detailed analyses reveal disparate clade-specific processes that allowed for ongoing species diversification. One factor was significant variation among clades in diversification rates. For example, the nine principal clades of hummingbirds exhibit ∼15-fold variation in net diversification rates, with evidence for accelerated speciation of a clade that includes the Bee, Emerald, and Mountain Gem groups of hummingbirds. A second factor was colonization of key geographic regions, which opened up new ecological niches. For example, some clades diversified in the context of the uplift of the Andes Mountains, whereas others were affected by the formation of the Panamanian land bridge. Finally, although species accumulation is slowing in all groups of hummingbirds, several major clades maintain rapid rates of diversification on par with classical examples of rapid adaptive radiation

    Hyaluronan: A simple polysaccharide with diverse biological functions

    Get PDF
    Hyaluronan (HA) is a linear polysaccharide with disaccharide repeats of d-glucuronic acid and N-acetyl-d-glucosamine. It is evolutionarily conserved and abundantly expressed in the extracellular matrix (ECM), on the cell surface and even inside cells. Being a simple polysaccharide, HA exhibits an astonishing array of biological functions. HA interacts with various proteins or proteoglycans to organize the ECM and to maintain tissue homeostasis. The unique physical and mechanical properties of HA contribute to the maintenance of tissue hydration, the mediation of solute diffusion through the extracellular space and the lubrication of certain tissues. The diverse biological functions of HA are manifested through its complex interactions with matrix components and resident cells. Binding of HA with cell surface receptors activates various signaling pathways, which regulate cell function, tissue development, inflammation, wound healing and tumor progression and metastasis. Taking advantage of the inherent biocompatibility and biodegradability of HA, as well as its susceptibility to chemical modification, researchers have developed various HA-based biomaterials and tissue constructs with promising and broad clinical potential. This paper illustrates the properties of HA from a matrix biology perspective by first introducing the principles underlying the biosynthesis and biodegradation of HA, as well as the interactions of HA with various proteins and proteoglycans. It next highlights the roles of HA in physiological and pathological states, including morphogenesis, wound healing and tumor metastasis. A deeper understanding of the mechanisms underlying the roles of HA in various physiological processes can provide new insights and tools for the engineering of complex tissues and tissue models
    • …
    corecore