169 research outputs found
Pigs as Source of Methicillin-Resistant Staphylococcus aureus CC398 Infections in Humans, Denmark
Persons living or working on farms, particularly pig farms, are at increased risk for infection
Origin and evolution of European community-acquired methicillin-resistant \u3ci\u3eStaphylococcus aureus\u3c/i\u3e
Community-acquired methicillin-resistant Staphylococcus aureus (CA-MRSA) was recognized in Europe and worldwide in the late 1990s. Within a decade, several genetically and geographically distinct CA-MRSA lineages carrying the small SCCmec type IV and V genetic elements and the Panton-Valentine leukocidin (PVL) emerged around the world. In Europe, the predominant CA-MRSA strain belongs to clonal complex 80 (CC80) and is resistant to kanamycin/amikacin and fusidic acid. CC80 was first reported in 1993 but was relatively rare until the late 1990s. It has since been identified throughout North Africa, the Middle East, and Europe, with recent sporadic reports in sub-Saharan Africa. While strongly associated with skin and soft tissue infections, it is rarely found among asymptomatic carriers. Methicillin-sensitive S. aureus (MSSA) CC80 strains are extremely rare except in sub-Saharan Africa. In the current study, we applied whole-genome sequencing to a global collection of both MSSA and MRSA CC80 isolates. Phylogenetic analyses strongly suggest that the European epidemic CA-MRSA lineage is derived from a PVL-positive MSSA ancestor from sub-Saharan Africa. Moreover, the tree topology suggests a single acquisition of both the SCCmec element and a plasmid encoding the fusidic acid resistance determinant. Four canonical SNPs distinguish the derived CA-MRSA lineage and include a nonsynonymous mutation in accessory gene regulator C (agrC). These changes were associated with a star-like expansion into Europe, the Middle East, and North Africa in the early 1990s, including multiple cases of cross-continent imports likely driven by human migrations
Genome analysis of Staphylococcus aureus ST291, a double locus variant of ST398, reveals a distinct genetic lineage
Staphylococcus aureus ST291 has been reported as a homologue recombinant double locus variant of the livestock associated S. aureus ST398. However, whole genome sequencing show that ST291 is a unique genetic lineage with highly variable content within its accessory genome compared to both human and livestock associated genome sequenced CC398s
Recommended from our members
Novel mutations in penicillin-binding protein genes in clinical Staphylococcus aureus isolates that are methicillin resistant on susceptibility testing, but lack the mec gene.
OBJECTIVES: Methicillin-resistant Staphylococcus aureus (MRSA) is an important global health problem. MRSA resistance to β-lactam antibiotics is mediated by the mecA or mecC genes, which encode an alternative penicillin-binding protein (PBP) 2a that has a low affinity to β-lactam antibiotics. Detection of mec genes or PBP2a is regarded as the gold standard for the diagnosis of MRSA. We identified four MRSA isolates that lacked mecA or mecC genes, but were still phenotypically resistant to pencillinase-resistant β-lactam antibiotics. METHODS: The four human S. aureus isolates were investigated by whole genome sequencing and a range of phenotypic assays. RESULTS: We identified a number of amino acid substitutions present in the endogenous PBPs 1, 2 and 3 that were found in the resistant isolates but were absent in closely related susceptible isolates and which may be the basis of resistance. Of particular interest are three identical amino acid substitutions in PBPs 1, 2 and 3, occurring independently in isolates from at least two separate multilocus sequence types. Two different non-conservative substitutions were also present in the same amino acid of PBP1 in two isolates from two different sequence types. CONCLUSIONS: This work suggests that phenotypically resistant MRSA could be misdiagnosed using molecular methods alone and provides evidence of alternative mechanisms for β-lactam resistance in MRSA that may need to be considered by diagnostic laboratories
Emergence of Livestock-Associated Methicillin-Resistant Staphylococcus aureus Bloodstream Infections in Denmark
Background Livestock-associated methicillin-resistant Staphylococcus aureus clonal complex 398 (LA-MRSA CC398) is causing an increasing number of skin and soft tissue infections (SSTIs) in Denmark and other European countries with industrial pig production. Yet, its impact on MRSA bloodstream infections (BSIs) has not been well studied. Methods We investigated the clinical epidemiology of all human cases of LA-MRSA CC398 BSI during 2010–2015. Cases of LA-MRSA CC398 BSI were compared to cases of BSI caused by other types of MRSA and cases of SSTI caused by LA-MRSA CC398. Whole-genome sequence analysis was used to assess the phylogenetic relationship among LA-MRSA CC398 isolates from Danish pigs and cases of BSI and SSTI. Results The number of LA-MRSA CC398 BSIs and SSTIs increased over the years, peaking in 2014, when LA-MRSA CC398 accounted for 16% (7/44) and 21% (211/985) of all MRSA BSIs and SSTIs, corresponding to 1.2 and 37.4 cases of BSI and SSTI per 1000000 person-years, respectively. Most patients with LA-MRSA CC398 BSI had no contact to livestock, although they tended to live in rural areas. LA-MRSA CC398 caused 24.3 BSIs per 1000 SSTIs among people with no livestock contact, which is similar to the ratio observed for other types of MRSA. Whole-genome sequence analysis showed that most of the BSI and SSTI isolates were closely related to Danish pig isolates. Conclusions This study demonstrates that the increasing number of LA-MRSA CC398 BSIs occurred in parallel with a much larger wave of LA-MRSA CC398 SSTIs and an expanding pig reservoir
Methicillin-Resistant Staphylococcus aureus ST9 in Pigs in Thailand
BACKGROUND: Methicillin-resistant Staphylococcus aureus (MRSA) is an important nosocomial and community-associated pathogen. Recently, livestock-associated MRSA (LA-MRSA) has emerged and disseminated in Europe and North America and now constitutes a considerable zoonotic burden in humans with risk factors of pig exposure, whereas the extent of the livestock reservoir is relatively unknown on other continents. METHODOLOGY/PRINCIPAL FINDINGS: From March through April 2011, MRSA was identified in pigs from 3 out of 30 production holdings in Chang Mai Province, Thailand. Representative isolates were subjected to molecular characterization and antimicrobial susceptibility testing; all isolates had genotypic and phenotypic characteristics of LA-MRSA previously characterized in the region: they belonged to ST9, lacked the lukF-lukS genes encoding Panton-Valentine leukocidin, and were resistant to multiple non-β-lactam antimicrobials. However, unlike other Asian LA-MRSA-ST9 variants, they were spa type t337 and harbored a different staphylococcal cassette chromosome mec IX. CONCLUSIONS/SIGNIFICANCE: A novel MRSA-ST9 lineage has been established in the pig population of Thailand, which differs substantially from LA-MRSA lineages found in other areas of the continent. The emergence of novel LA-MRSA lineages in the animal agriculture setting is worrisome and poses a serious threat to global public health
A controlled trial of protein enrichment of meal replacements for weight reduction with retention of lean body mass
<p>Abstract</p> <p>Background</p> <p>While high protein diets have been shown to improve satiety and retention of lean body mass (LBM), this study was designed to determine effects of a protein-enriched meal replacement (MR) on weight loss and LBM retention by comparison to an isocaloric carbohydrate-enriched MR within customized diet plans utilizing MR to achieve high protein or standard protein intakes.</p> <p>Methods</p> <p>Single blind, placebo-controlled, randomized outpatient weight loss trial in 100 obese men and women comparing two isocaloric meal plans utilizing a standard MR to which was added supplementary protein or carbohydrate powder. MR was used twice daily (one meal, one snack). One additional meal was included in the meal plan designed to achieve individualized protein intakes of either 1) 2.2 g protein/kg of LBM per day [high protein diet (HP)] or 2) 1.1 g protein/kg LBM/day standard protein diet (SP). LBM was determined using bioelectrical impedance analysis (BIA). Body weight, body composition, and lipid profiles were measured at baseline and 12 weeks.</p> <p>Results</p> <p>Eighty-five subjects completed the study. Both HP and SP MR were well tolerated, with no adverse effects. There were no differences in weight loss at 12 weeks (-4.19 ± 0.5 kg for HP group and -3.72 ± 0.7 kg for SP group, p > 0.1). Subjects in the HP group lost significantly more fat weight than the SP group (HP = -1.65 ± 0.63 kg; SP = -0.64 ± 0.79 kg, P = 0.05) as estimated by BIA. There were no significant differences in lipids nor fasting blood glucose between groups, but within the HP group a significant decrease in cholesterol and LDL cholesterol was noted at 12 weeks. This was not seen in the SP group.</p> <p>Conclusion</p> <p>Higher protein MR within a higher protein diet resulted in similar overall weight loss as the standard protein MR plan over 12 weeks. However, there was significantly more fat loss in the HP group but no significant difference in lean body mass. In this trial, subject compliance with both the standard and protein-enriched MR strategy for weight loss may have obscured any effect of increased protein on weight loss demonstrated in prior weight loss studies using whole food diets.</p
- …