15 research outputs found
Human versus Computer Controlled Selection of Ventilator Settings: An Evaluation of Adaptive Support Ventilation and Mid-Frequency Ventilation
Background. There are modes of mechanical ventilation that can select ventilator settings with computer controlled algorithms (targeting schemes). Two examples are adaptive support ventilation (ASV) and mid-frequency ventilation (MFV). We studied how different clinician-chosen ventilator settings are from these computer algorithms under different scenarios. Methods. A survey of critical care clinicians provided reference ventilator settings for a 70 kg paralyzed patient in five clinical/physiological scenarios. The survey-derived values for minute ventilation and minute alveolar ventilation were used as goals for ASV and MFV, respectively. A lung simulator programmed with each scenario’s respiratory system characteristics was ventilated using the clinician, ASV, and MFV settings. Results. Tidal volumes ranged from 6.1 to 8.3 mL/kg for the clinician, 6.7 to 11.9 mL/kg for ASV, and 3.5 to 9.9 mL/kg for MFV. Inspiratory pressures were lower for ASV and MFV. Clinician-selected tidal volumes were similar to the ASV settings for all scenarios except for asthma, in which the tidal volumes were larger for ASV and MFV. MFV delivered the same alveolar minute ventilation with higher end expiratory and lower end inspiratory volumes. Conclusions. There are differences and similarities among initial ventilator settings selected by humans and computers for various clinical scenarios. The ventilation outcomes are the result of the lung physiological characteristics and their interaction with the targeting scheme
PVP1-The People's Ventilator Project: A fully open, low-cost, pressure-controlled ventilator research platform compatible with adult and pediatric uses.
Mechanical ventilators are safety-critical devices that help patients breathe, commonly found in hospital intensive care units (ICUs)-yet, the high costs and proprietary nature of commercial ventilators inhibit their use as an educational and research platform. We present a fully open ventilator device-The People's Ventilator: PVP1-with complete hardware and software documentation including detailed build instructions and a DIY cost of $1,700 USD. We validate PVP1 against both key performance criteria specified in the U.S. Food and Drug Administration's Emergency Use Authorization for Ventilators, and in a pediatric context against a state-of-the-art commercial ventilator. Notably, PVP1 performs well over a wide range of test conditions and performance stability is demonstrated for a minimum of 75,000 breath cycles over three days with an adult mechanical test lung. As an open project, PVP1 can enable future educational, academic, and clinical developments in the ventilator space