13,396 research outputs found

    The Astrochemical Evolution of Turbulent Giant Molecular Clouds : I - Physical Processes and Method of Solution for Hydrodynamic, Embedded Starless Clouds

    Full text link
    Contemporary galactic star formation occurs predominantly within gravitationally unstable, cold, dense molecular gas within supersonic, turbulent, magnetized giant molecular clouds (GMCs). Significantly, because the chemical evolution timescale and the turbulent eddy-turnover timescale are comparable at typical GMC conditions, molecules evolve via inherently non-equilibrium chemistry which is strongly coupled to the dynamical evolution of the cloud. Current numerical simulation techniques, which include at most three decades in length scale, can just begin to bridge the divide between the global dynamical time of supersonic turbulent GMCs, and the thermal and chemical evolution within the thin post-shock cooling layers of their background turbulence. We address this GMC astrochemical scales problem using a solution methodology, which permits both complex three-dimensional turbulent dynamics as well as accurate treatment of non-equilibrium post-shock thermodynamics and chemistry. We present the current methodology in the context of the larger scope of physical processes important in understanding the chemical evolution of GMCs, including gas-phase chemistry, dust grains and surface chemistry, and turbulent heating. We present results of a new Lagrangian verification test for supersonic turbulence. We characterize the evolution of these species according to the dimensionless local post-shock Damk\"{o}hler number, which quantifies the ratio of the dynamical time in the post-shock cooling flow to the chemical reaction time of a given species. Lastly, we discuss implications of this work to the selection of GMC molecular tracers, and the zeroing of chemical clocks of GMC cores.Comment: 35 pages, 7 figures, 16 tables. Accepted to MNRAS. Revised to correct some typographic error

    System requirements and design features of Space Station Remote Manipulator System mechanisms

    Get PDF
    The Space Station Remote Manipulator System (SSRMS) is a long robotic arm for handling large objects/payloads on the International Space Station Freedom. The mechanical components of the SSRMS include seven joints, two latching end effectors (LEEs), and two boom assemblies. The joints and LEEs are complex aerospace mechanisms. The system requirements and design features of these mechanisms are presented. All seven joints of the SSRMS have identical functional performance. The two LEES are identical. This feature allows either end of the SSRMS to be used as tip or base. As compared to the end effector of the Shuttle Remote Manipulator System, the LEE has a latch and umbilical mechanism in addition to the snare and rigidize mechanisms. The latches increase the interface preload and allow large payloads (up to 116,000 Kg) to be handled. The umbilical connectors provide power, data, and video signal transfer capability to/from the SSRMS

    Channel assignment in cellular radio

    Get PDF
    Some heuristic channel-assignment algorithms for cellular systems are described. These algorithms have yielded optimal, or near-optimal assignments, in many cases. The channel-assignment problem can be viewed as a generalized graph-coloring problem, and these algorithms have been developed, in part, by suitably adapting some of the ideas previously introduced in heuristic graph-coloring algorithms. The channel-assignment problem is formulated as a minimum-span problem, i.e. a problem wherein the requirement is to find the minimum bandwidth necessary to satisfy a given demand. Examples are presented, and algorithm performance results are discussed

    Performance limits for channelized cellular telephone systems

    Get PDF
    Studies the performance of channel assignment algorithms for “channelized” (e.g., FDMA or TDMA) cellular telephone systems, via mathematical models, each of which is characterized by a pair (H,p), where H is a hypergraph describing the channel reuse restrictions, and p is a probability vector describing the variation of traffic intensity from cell to cell. For a given channel assignment algorithm, the authors define T(r) to be the amount of carried traffic, as a function of the offered traffic, where both r and T(r) are measured in Erlangs per channel. They show that for a given H and p, there exists a function TH,p(r), which can be computed by linear programming, such that for every channel assignment algorithm, T(r) ≤ TH,p(r). Moreover, they show that there exist channel assignment algorithms whose performance approaches TH,p (r) arbitrarily closely as the number of channels increases. As a corollary, they show that for a given (H,p) there is a number r0 , which also can be computed by linear programming, such that if the offered traffic exceeds r0, then for any channel assignment algorithm, a positive fraction of all call requests must be blocked, whereas if the offered traffic is less than r0, all call requests can be honored, if the number of channels is sufficiently large. The authors call r0, whose units are Erlangs per channel, the capacity of the cellular system

    Analysis of Feature Models Using Alloy: A Survey

    Full text link
    Feature Models (FMs) are a mechanism to model variability among a family of closely related software products, i.e. a software product line (SPL). Analysis of FMs using formal methods can reveal defects in the specification such as inconsistencies that cause the product line to have no valid products. A popular framework used in research for FM analysis is Alloy, a light-weight formal modeling notation equipped with an efficient model finder. Several works in the literature have proposed different strategies to encode and analyze FMs using Alloy. However, there is little discussion on the relative merits of each proposal, making it difficult to select the most suitable encoding for a specific analysis need. In this paper, we describe and compare those strategies according to various criteria such as the expressivity of the FM notation or the efficiency of the analysis. This survey is the first comparative study of research targeted towards using Alloy for FM analysis. This review aims to identify all the best practices on the use of Alloy, as a part of a framework for the automated extraction and analysis of rich FMs from natural language requirement specifications.Comment: In Proceedings FMSPLE 2016, arXiv:1603.0857

    A denoising algorithm for surface EMG decomposition

    Get PDF
    The goal of the present thesis was to investigate a novel motor unit potential train (MUPT) editing routine, based on decreasing the variability in shape (variance ratio, VR) of the MUP ensemble. Decomposed sEMG data from 20 participants at 60% MVC of wrist flexion was used. There were two levels of denoising (relaxed and strict) criteria for removing discharge times associated with waveforms that did not decrease the VR and increase its signal-to-noise ratio (SNR) of the MUP ensemble. The peak-to-peak amplitude and the duration between the positive and negative peaks for the MUP template were dependent on the level of denoising (p’s 0.05). The same was true between denoising criteria (p>0.05). Editing the MUPT based on MUP shape resulted in significant differences in measures extracted from the MUP template, with trivial difference between the standard error of estimate for mean IDIs between the complete and denoised MUPTs
    • …
    corecore