110 research outputs found

    The Electronic and Superconducting Properties of Oxygen-Ordered MgB2 compounds of the form Mg2B3Ox

    Full text link
    Possible candidates for the Mg2B3Ox nanostructures observed in bulk of polycrystalline MgB2 (Ref.1) have been studied using a combination of Z-contrast imaging, electron energy loss spectroscopy (EELS) and first-principles calculations. The electronic structures, phonon modes, and electron phonon coupling parameters are calculated for two oxygen-ordered MgB2 compounds of composition Mg2B3O and Mg2B3O2, and compared with those of MgB2. We find that the density of states for both Mg2B3Ox structures show very good agreement with EELS, indicating that they are excellent candidates to explain the observed coherent oxygen precipitates. Incorporation of oxygen reduces the transition temperature and gives calculated TC values of 18.3 K and 1.6 K for Mg2B3O and Mg2B3O2, respectively.Comment: Submitted to PR

    Measuring the Hole State Anisotropy in MgB2 by Electron Energy-Loss Spectroscopy

    Full text link
    We have examined polycrystalline MgB2 by electron energy loss spectroscopy (EELS) and density of state calculations. In particular, we have studied two different crystal orientations, [110] and [001] with respect to the incident electron beam direction, and found significant changes in the near-edge fine-structure of the B K-edge. Density functional theory suggests that the pre-peak of the B K-edge core loss is composed of a mixture of pxy and pz hole states and we will show that these contributions can be distinguished only with an experimental energy resolution better than 0.5 eV. For conventional TEM/STEM instruments with an energy resolution of ~1.0 eV the pre-peak still contains valuable information about the local charge carrier concentration that can be probed by core-loss EELS. By considering the scattering momentum transfer for different crystal orientations, it is possible to analytically separate pxy and pz components from of the experimental spectra With careful experiments and analysis, EELS can be a unique tool measuring the superconducting properties of MgB2, doped with various elements for improved transport properties on a sub-nanometer scale.Comment: 26 Pages, 5 figures, 1 table. Submited to PR

    Hybrid organic-inorganic two-dimensional metal carbide MXenes with amido- and imido-terminated surfaces

    Full text link
    Two-dimensional (2D) transition-metal carbides and nitrides (MXenes) show impressive performance in applications, such as supercapacitors, batteries, electromagnetic interference shielding, or electrocatalysis. These materials combine the electronic and mechanical properties of 2D inorganic crystals with chemically modifiable surfaces, and surface-engineered MXenes represent an ideal platform for fundamental and applied studies of interfaces in 2D functional materials. A natural step in structural engineering of MXene compounds is the development and understanding of MXenes with various organic functional groups covalently bound to inorganic 2D sheets. Such hybrid structures have the potential to unite the tailorability of organic molecules with the unique electronic properties of inorganic 2D solids. Here, we introduce a new family of hybrid MXenes (h-MXenes) with amido- and imido-bonding between organic and inorganic parts. The description of h-MXene structure requires an intricate mix of concepts from the fields of coordination chemistry, self-assembled monolayers (SAMs) and surface science. The optical properties of h-MXenes reveal coherent coupling between the organic and inorganic components. h-MXenes also show superior stability against hydrolysis in aqueous solutions.Comment: 10 pages, 4 figure

    Performance assessment of a slat gamma collimator for the 511 keV imaging

    No full text
    The physical performance of a prototype slat collimator is described for gamma camera planar imaging at 511 keV. Measurements were made of sensitivity, spatial resolution and a septal penetration index at 511 keV. These measurements were repeated with a commercial parallel hole collimator designed for 511 keV imaging. The slat collimator sensitivity was 22.9 times that of the parallel hole collimator with 10 cm tissue equivalent scatter material, and 16.8 times the parallel hole collimator sensitivity in air. Spatial resolution was also better for the slat collimator than the parallel hole collimator (FWHM at 10 cm in air 17.9 mm and 21.2 mm respectively). Septal penetration was compared by a single value for the counts at 120 mm from the point source profile peak, expressed as a percentage of the peak counts, showing less penetration for the slat collimator than the parallel hole collimator (1.9% versus 3.6% respectively). In conclusion, these results show that the slat collimator may have advantages over the parallel hole collimator for 511 keV imaging, though the greater complexity of operation of the slat collimator and potential sources of artefact in slat collimator imaging are recognized
    corecore