31 research outputs found
IgA Nephropathy Genetic Risk Score to Estimate the Prevalence of IgA Nephropathy in UK Biobank
Background: IgA nephropathy (IgAN) is the commonest glomerulonephritis worldwide. Its prevalence is difficult to estimate, as people with mild disease do not commonly receive a biopsy diagnosis. We aimed to generate an IgA nephropathy genetic risk score (IgAN-GRS) and estimate the proportion of people with hematuria who had IgAN in the UK Biobank (UKBB).
Methods: We calculated an IgAN-GRS using 14 single-nucleotide polymorphisms (SNPs) drawn from the largest European Genome-Wide Association Study (GWAS) and validated the IgAN-GRS in 464 biopsy-proven IgAN European cases from the UK Glomerulonephritis DNA Bank (UKGDB) and in 379,767 Europeans in the UKBB. We used the mean of IgAN-GRS to calculate the proportion of potential IgAN in 14,181 with hematuria and other nonspecific renal phenotypes from 379,767 Europeans in the UKBB.
Results: The IgAN-GRS was higher in the IgAN cohort (4.30; 95% confidence interval [95% CI: 4.23-4.38) than in controls (3.98; 3.97-3.98; P < 0.0001). The mean GRS in UKBB participants with hematuria (n = 12,858) was higher (4.04; 4.02-4.06) than UKBB controls (3.98; 3.97-3.98; P < 0.0001) and higher in those with hematuria, hypertension, and microalbuminuria (n = 1323) (4.07; 4.02-4.13) versus (3.98; 3.97-3.98; P = 0.0003). Using the difference in these means, we estimated that IgAN accounted for 19% of noncancer hematuria and 28% with hematuria, hypertension, and microalbuminuria in UKBB.
Conclusions: We used an IgAN-GRS to estimate the prevalence of IgAN contributing to common phenotypes that are not always biopsied. The noninvasive use of polygenic risk in this setting may have further utility to identify likely etiology of nonspecific renal phenotypes in large population cohorts.This article is freely available via Open Access. Click on the Publisher URL to access it via the publisher's site.This study was done with the UK Biobank resource (application 9072). UK Glomerulonephritis DNA Bank
cohort. Piotr SÅ‚owinski, was consulted on the means method and helped with the simulation estimates and calculation. KS is funded by an Nation Institute for Health and Research (NIHR) Academic Clinical Fellowship. SAS is supported by a Diabetes UK PhD studentship (17/0005757). RAO is supported by a Diabetes UK Harry Keen Fellowship (16/0005529) MNW is supported by the Wellcome Trust
Institutional Support Fund (WT097835MF). The views expressed are those of the authors and not necessarily those of the National Health Service (NHS), the NIHR, or the Department of Healthpublished version, accepted version, submitted versio
11β-HSD1 suppresses cardiac fibroblast CXCL2, CXCL5 and neutrophil recruitment to the heart post MI
We have previously demonstrated that neutrophil recruitment to the heart following myocardial infarction (MI) is enhanced in mice lacking 11β-hydroxysteroid dehydrogenase type 1 (11β-HSD1) that regenerates active glucocorticoid within cells from intrinsically inert metabolites. The present study aimed to identify the mechanism of regulation. In a mouse model of MI, neutrophil mobilization to blood and recruitment to the heart were higher in 11β-HSD1-deficient (Hsd11b1(-)(/)(-) ) relative to wild-type (WT) mice, despite similar initial injury and circulating glucocorticoid. In bone marrow chimeric mice, neutrophil mobilization was increased when 11β-HSD1 was absent from host cells, but not when absent from donor bone marrow-derived cells. Consistent with a role for 11β-HSD1 in 'host' myocardium, gene expression of a subset of neutrophil chemoattractants, including the chemokines Cxcl2 and Cxcl5, was selectively increased in the myocardium of Hsd11b1(-)(/)(-) mice relative to WT. SM22α-Cre directed disruption of Hsd11b1 in smooth muscle and cardiomyocytes had no effect on neutrophil recruitment. Expression of Cxcl2 and Cxcl5 was elevated in fibroblast fractions isolated from hearts of Hsd11b1(-)(/)(-) mice post MI and provision of either corticosterone or of the 11β-HSD1 substrate, 11-dehydrocorticosterone, to cultured murine cardiac fibroblasts suppressed IL-1α-induced expression of Cxcl2 and Cxcl5 These data identify suppression of CXCL2 and CXCL5 chemoattractant expression by 11β-HSD1 as a novel mechanism with potential for regulation of neutrophil recruitment to the injured myocardium, and cardiac fibroblasts as a key site for intracellular glucocorticoid regeneration during acute inflammation following myocardial injury
Chorioretinal thinning in chronic kidney disease links to inflammation and endothelial dysfunction
BACKGROUND. Chronic kidney disease (CKD) is strongly associated with cardiovascular disease and there is an established association between vasculopathy affecting the kidney and eye. Optical coherence tomography (OCT) is a novel, rapid method for high-definition imaging of the retina and choroid. Its use in patients at high cardiovascular disease risk remains unexplored. METHODS. We used the new SPECTRALIS OCT machine to examine retinal and retinal nerve fiber layer (RNFL) thickness, macular volume, and choroidal thickness in a prospective cross-sectional study in 150 subjects: 50 patients with hypertension (defined as a documented clinic BP greater than or equal to 140/90 mmHg (prior to starting any treatment) with no underlying cause identified); 50 with CKD (estimated glomerular filtration rate (eGFR) 8–125 ml/min/1.73 m(2)); and 50 matched healthy controls. We excluded those with diabetes. The same, masked ophthalmologist carried out each study. Plasma IL-6, TNF-α , asymmetric dimethylarginine (ADMA), and endothelin-1 (ET-1), as measures of inflammation and endothelial function, were also assessed. RESULTS. Retinal thickness, macular volume, and choroidal thickness were all reduced in CKD compared with hypertensive and healthy subjects (for retinal thickness and macular volume P < 0.0001 for CKD vs. healthy and for CKD vs. hypertensive subjects; for choroidal thickness P < 0.001 for CKD vs. healthy and for CKD vs. hypertensive subjects). RNFL thickness did not differ between groups. Interestingly, a thinner choroid was associated with a lower eGFR (r = 0.35, P <0.0001) and, in CKD, with proteinuria (r = –0.58, P < 0.001) as well as increased circulating C-reactive protein (r = –0.57, P = 0.0002), IL-6 (r = –0.40, P < 0.01), ADMA (r = –0.37, P = 0.02), and ET-1 (r = –0.44, P < 0.01). Finally, choroidal thinning was associated with renal histological inflammation and arterial stiffness. In a model of hypertension, choroidal thinning was seen only in the presence of renal injury. CONCLUSIONS. Chorioretinal thinning in CKD is associated with lower eGFR and greater proteinuria, but not BP. Larger studies, in more targeted groups of patients, are now needed to clarify whether these eye changes reflect the natural history of CKD. Similarly, the associations with arterial stiffness, inflammation, and endothelial dysfunction warrant further examination. TRIAL REGISTRATION. Registration number at www.clinicalTrials.gov: NCT02132741. SOURCE OF FUNDING. TR was supported by a bursary from the Erasmus Medical Centre, Rotterdam. JJMHvB was supported by a bursary from the Utrecht University. JRC is supported by a Rowling Scholarship. SB was supported by a Wellcome Trust funded clinical research fellowship from the Scottish Translational Medicine and Therapeutics Initiative, and by a Rowling Scholarship, at the time of this work. ND is supported by a British Heart Foundation Intermediate Clinical Research Fellowship (FS/13/30/29994)
Chorioretinal thinning in chronic kidney disease links to inflammation and endothelial dysfunction
The Engineering and Sciences Library was formed in 1990,incorporating the C. S. Davis Mathematics Library and the Thomas Parnell Memorial Physics Library. In 1997 the library was refurbished and merged with the Geology Library collection. The library was named the Dorothy Hill Physical Sciences and Engineering Library, after the late Professor Dorothy Hill, and opened officially on 26 August 1997. In 2011, the name was changed to the Dorothy Hill Engineering and Sciences Library, when the collections were merged with those of the Biological Sciences Library