65 research outputs found

    Ultracold atoms for foundational tests of quantum mechanics

    Get PDF

    Quantum-Enhanced Sensing Based on Time Reversal of Nonlinear Dynamics

    Full text link
    We experimentally demonstrate a nonlinear detection scheme exploiting time-reversal dynamics that disentangles continuous variable entangled states for feasible readout. Spin-exchange dynamics of Bose-Einstein condensates is used as the nonlinear mechanism which not only generates entangled states but can also be time reversed by controlled phase imprinting. For demonstration of a quantum-enhanced measurement we construct an active atom SU(1,1) interferometer, where entangled state preparation and nonlinear readout both consist of parametric amplification. This scheme is capable of exhausting the quantum resource by detecting solely mean atom numbers. Controlled nonlinear transformations widen the spectrum of useful entangled states for applied quantum technologies.Comment: 9 pages, 3 figures, 3 pages supplementary material, 2 supplementary figure

    Fast generation of spin squeezing via resonant spin-boson coupling

    Full text link
    We propose protocols for the creation of useful entangled states in a system of spins collectively coupled to a bosonic mode, directly applicable to trapped-ion and cavity QED setups. The protocols use coherent manipulations of the spin-boson interactions naturally arising in these systems to prepare spin squeezed states exponentially fast in time. We demonstrate the robustness of the protocols by analyzing the effects of natural sources of decoherence in these systems and show their advantage compared to more standard slower approaches where entanglement is generated algebraically with time.Comment: 6 pages, 4 figures (18 pages, 8 figures with appendices

    Shattered Time: Can a Dissipative Time Crystal Survive Many-Body Correlations?

    Get PDF
    We investigate the emergence of a time crystal in a driven-dissipative many-body spin array. In this system the interplay between incoherent spin pumping and collective emission stabilizes a synchronized non-equilibrium steady state which in the thermodynamic limit features a self-generated time-periodic pattern imposed by collective elastic interactions. In contrast to prior realizations where the time symmetry is already broken by an external drive, here it is only spontaneously broken by the elastic exchange interactions and manifest in the two-time correlation spectrum. Employing a combination of exact numerical calculations and a second-order cumulant expansion, we investigate the impact of many-body correlations on the time crystal formation and establish a connection between the regime where it is stable and a slow growth rate of the mutual information, signalling that the time crystal studied here is an emergent semi-classical out-of-equilibrium state of matter. We also confirm the rigidity of the time crystal to single-particle dephasing. Finally, we discuss an experimental implementation using long-lived dipoles in an optical cavity.Comment: v1: Initial commit; v2: Added references, fixed a couple typos, and made some small, stylistic changes; v3: Update to reflect publication. Includes additional references and some minor addition
    • …
    corecore