10,271 research outputs found
Temperature equilibration in a fully ionized plasma: electron-ion mass ratio effects
Brown, Preston, and Singleton (BPS) produced an analytic calculation for
energy exchange processes for a weakly to moderately coupled plasma: the
electron-ion temperature equilibration rate and the charged particle stopping
power. These precise calculations are accurate to leading and next-to-leading
order in the plasma coupling parameter, and to all orders for two-body quantum
scattering within the plasma. Classical molecular dynamics can provide another
approach that can be rigorously implemented. It is therefore useful to compare
the predictions from these two methods, particularly since the former is
theoretically based and the latter numerically. An agreement would provide both
confidence in our theoretical machinery and in the reliability of the computer
simulations. The comparisons can be made cleanly in the purely classical
regime, thereby avoiding the arbitrariness associated with constructing
effective potentials to mock up quantum effects. We present here the classical
limit of the general result for the temperature equilibration rate presented in
BPS. We examine the validity of the m_electron/m_ion --> 0 limit used in BPS to
obtain a very simple analytic evaluation of the long-distance, collective
effects in the background plasma.Comment: 14 pages, 4 figures, small change in titl
Ridge Production in High-Multiplicity Hadronic Ultra-Peripheral Proton-Proton Collisions
An unexpected result at the RHIC and the LHC is the observation that
high-multiplicity hadronic events in heavy-ion and proton-proton collisions are
distributed as two "ridges", approximately flat in rapidity and opposite in
azimuthal angle. We propose that the origin of these events is due to the
inelastic collisions of aligned gluonic flux tubes that underly the color
confinement of the quarks in each proton. We predict that high-multiplicity
hadronic ridges will also be produced in the high energy photon-photon
collisions accessible at the LHC in ultra-peripheral proton-proton collisions
or at a high energy electron-positron collider. We also note the orientation of
the flux tubes between the quark and antiquark of each high energy photon will
be correlated with the plane of the scattered proton or lepton. Thus hadron
production and ridge formation can be controlled in a novel way at the LHC by
observing the azimuthal correlations of the scattering planes of the
ultra-peripheral protons with the orientation of the produced ridges.
Photon-photon collisions can thus illuminate the fundamental physics underlying
the ridge effect and the physics of color confinement in QCD.Comment: Presented by SJB at Photon 2017: The International Conference on the
Structure and the Interactions of the Photon and the International Workshop
on Photon-Photon Collisions. CERN, May 22-26, 2017. References adde
Processing and Transmission of Information
Contains reports on two research projects.National Aeronautics and Space Administration (Grant NGL 22-009-013)U. S. Army Research Office - Durham (Contract DAHC04-71-C-0039
Entropy of Constant Curvature Black Holes in General Relativity
We consider the thermodynamic properties of the constant curvature black hole
solution recently found by Banados. We show that it is possible to compute the
entropy and the quasilocal thermodynamics of the spacetime using the
Einstein-Hilbert action of General Relativity. The constant curvature black
hole has some unusual properties which have not been seen in other black hole
spacetimes. The entropy of the black hole is not associated with the event
horizon; rather it is associated with the region between the event horizon and
the observer. Further, surfaces of constant internal energy are not isotherms
so the first law of thermodynamics exists only in an integral form. These
properties arise from the unusual topology of the Euclidean black hole
instanton.Comment: 4 pages LaTeX2e (RevTeX), 2 PostScript figures. Small corrections in
the text and the reference
Planetary astronomy
The authors profile the field of astronomy, identify some of the key scientific questions that can be addressed during the decade of the 1990's, and recommend several facilities that are critically important for answering these questions. Scientific opportunities for the 1990' are discussed. Areas discussed include protoplanetary disks, an inventory of the solar system, primitive material in the solar system, the dynamics of planetary atmospheres, planetary rings and ring dynamics, the composition and structure of the atmospheres of giant planets, the volcanoes of IO, and the mineralogy of the Martian surface. Critical technology developments, proposed projects and facilities, and recommendations for research and facilities are discussed
Polarized Narrow-Line Emission from the Nucleus of NGC 4258
The detection of polarized continuum and line emission from the nucleus of
NGC 4258 by Wilkes et al. (1995) provides an intriguing application of the
unified model of Seyfert nuclei to a galaxy in which there is known to be an
edge-on, rotating disk of molecular gas surrounding the nucleus. Unlike most
Seyfert nuclei, however, NGC 4258 has strongly polarized narrow emission lines.
To further investigate the origin of the polarized emission, we have obtained
spectropolarimetric observations of the NGC 4258 nucleus at the Keck-II
telescope. The narrow-line polarizations range from 1.0% for [S II] 6716 to
13.9% for the [O II] 7319,7331 blend, and the position angle of polarization is
oriented nearly parallel to the projected plane of the masing disk. A
correlation between critical density and degree of polarization is detected for
the forbidden lines, indicating that the polarized emission arises from
relatively dense (n_e > 10^4 cm^-3) gas. An archival Hubble Space Telescope
narrow-band [O III] image shows that the narrow-line region has a compact,
nearly unresolved core, implying a FWHM size of <2.5 pc. We discuss the
possibility that the polarized emission might arise from the accretion disk
itself and become polarized by scattering within the disk atmosphere. A more
likely scenario is an obscuring torus or strongly warped disk surrounding the
inner portion of a narrow-line region which is strongly stratified in density.
The compact size of the narrow-line region implies that the obscuring structure
must be smaller than ~2.5 pc in diameter.Comment: To appear in the Astronomical Journal. 13 pages, including 1 table
and 4 figures. Uses emulateapj.st
Zeroing in on more photons and gluons
We discuss radiation zeros that are found in gauge tree amplitudes for
processes involving multi-photon emission. Previous results are clarified by
examples and by further elaboration. The conditions under which such amplitude
zeros occur are identical in form to those for the single-photon zeros, and all
radiated photons must travel parallel to each other. Any other neutral particle
likewise must be massless (e.g. gluon) and travel in that common direction. The
relevance to questions like gluon jet identification and computational checks
is considered. We use examples to show how certain multi-photon amplitudes
evade the zeros, and to demonstrate the connection to a more general result,
the decoupling of an external electromagnetic plane wave in the ``null zone".
Brief comments are made about zeros associated with other gauge-boson emission.Comment: 26 page
Blobs in Wolf-Rayet Winds: Random Photometric and Polarimetric Variability
Some isolated Wolf-Rayet stars present random variability in their optical
flux and polarization. We make the assumption that such variability is caused
by the presence of regions of enhanced density, i.e. blobs, in their envelopes.
In order to find the physical characteristics of such regions we have modeled
the stellar emission using a Monte Carlo code to treat the radiative transfer
in an inhomogeneous electron scattering envelope. We are able to treat multiple
scattering in the regions of enhanced density as well as in the envelope
itself. The finite sizes of the source and structures in the wind are also
taken into account. Most of the results presented here are based on a parameter
study of models with a single blob. The effects due to multiple blobs in the
envelope are considered to a more limited extent. Our simulations indicate that
the density enhancements must have a large geometric cross section in order to
produce the observed photopolarimetric variability. The sizes must be of the
order of one stellar radius and the blobs must be located near the base of the
envelope. These sizes are the same inferred from the widths of the sub-peaks in
optical emission lines of Wolf-Rayet stars. Other early-type stars show random
polarimetric fluctuations with characteristics similar to those observed in
Wolf-Rayet stars, which may also be interpreted in terms of a clumpy wind.
Although the origin of such structures is still unclear, the same mechanism may
be working in different types of hot stars envelopes to produce such
inhomogeneities.Comment: Accepted to ApJ. 17 pages + 6 figure
The statistical mechanics of complex signaling networks : nerve growth factor signaling
It is becoming increasingly appreciated that the signal transduction systems
used by eukaryotic cells to achieve a variety of essential responses represent
highly complex networks rather than simple linear pathways. While significant
effort is being made to experimentally measure the rate constants for
individual steps in these signaling networks, many of the parameters required
to describe the behavior of these systems remain unknown, or at best,
estimates. With these goals and caveats in mind, we use methods of statistical
mechanics to extract useful predictions for complex cellular signaling
networks. To establish the usefulness of our approach, we have applied our
methods towards modeling the nerve growth factor (NGF)-induced differentiation
of neuronal cells. Using our approach, we are able to extract predictions that
are highly specific and accurate, thereby enabling us to predict the influence
of specific signaling modules in determining the integrated cellular response
to the two growth factors. We show that extracting biologically relevant
predictions from complex signaling models appears to be possible even in the
absence of measurements of all the individual rate constants. Our methods also
raise some interesting insights into the design and possible evolution of
cellular systems, highlighting an inherent property of these systems wherein
particular ''soft'' combinations of parameters can be varied over wide ranges
without impacting the final output and demonstrating that a few ''stiff''
parameter combinations center around the paramount regulatory steps of the
network. We refer to this property -- which is distinct from robustness -- as
''sloppiness.''Comment: 24 pages, 10 EPS figures, 1 GIF (makes 5 multi-panel figs + caption
for GIF), IOP style; supp. info/figs. included as brown_supp.pd
Quasilocal Thermodynamics of Dilaton Gravity coupled to Gauge Fields
We consider an Einstein-Hilbert-Dilaton action for gravity coupled to various
types of Abelian and non-Abelian gauge fields in a spatially finite system.
These include Yang-Mills fields and Abelian gauge fields with three and
four-form field strengths. We obtain various quasilocal quantities associated
with these fields, including their energy and angular momentum, and develop
methods for calculating conserved charges when a solution possesses sufficient
symmetry. For stationary black holes, we find an expression for the entropy
from the micro-canonical form of the action. We also find a form of the first
law of black hole thermodynamics for black holes with the gauge fields of the
type considered here.Comment: 41 pages, latex, uses fonts provided by AMSTe
- …