14 research outputs found

    Extracellular vesicles isolated from milk can improve gut barrier dysfunction induced by malnutrition

    Get PDF
    Malnutrition impacts approximately 50 million children worldwide and is linked to 45% of global mortality in children below the age of five. Severe acute malnutrition (SAM) is associated with intestinal barrier breakdown and epithelial atrophy. Extracellular vesicles including exosomes (EVs; 30–150 nm) can travel to distant target cells through biofluids including milk. Since milk-derived EVs are known to induce intestinal stem cell proliferation, this study aimed to examine their potential efficacy in improving malnutrition-induced atrophy of intestinal mucosa and barrier dysfunction. Mice were fed either a control (18%) or a low protein (1%) diet for 14 days to induce malnutrition. From day 10 to 14, they received either bovine milk EVs or control gavage and were sacrificed on day 15, 4 h after a Fluorescein Isothiocyanate (FITC) dose. Tissue and blood were collected for histological and epithelial barrier function analyses. Mice fed low protein diet developed intestinal villus atrophy and barrier dysfunction. Despite continued low protein diet feeding, milk EV treatment improved intestinal permeability, intestinal architecture and cellular proliferation. Our results suggest that EVs enriched from milk should be further explored as a valuable adjuvant therapy to standard clinical management of malnourished children with high risk of morbidity and mortality

    A metabolic perspective of the neutrophil life cycle:new avenues in immunometabolism

    Get PDF
    Neutrophils are the most abundant innate immune cells. Multiple mechanisms allow them to engage a wide range of metabolic pathways for biosynthesis and bioenergetics for mediating biological processes such as development in the bone marrow and antimicrobial activity such as ROS production and NET formation, inflammation and tissue repair. We first discuss recent work on neutrophil development and functions and the metabolic processes to regulate granulopoiesis, neutrophil migration and trafficking as well as effector functions. We then discuss metabolic syndromes with impaired neutrophil functions that are influenced by genetic and environmental factors of nutrient availability and usage. Here, we particularly focus on the role of specific macronutrients, such as glucose, fatty acids, and protein, as well as micronutrients such as vitamin B3, in regulating neutrophil biology and how this regulation impacts host health. A special section of this review primarily discusses that the ways nutrient deficiencies could impact neutrophil biology and increase infection susceptibility. We emphasize biochemical approaches to explore neutrophil metabolism in relation to development and functions. Lastly, we discuss opportunities and challenges to neutrophil-centered therapeutic approaches in immune-driven diseases and highlight unanswered questions to guide future discoveries.</p

    Ready-to-Use Therapeutic Food (RUTF) Containing Low or No Dairy Compared to Standard RUTF for Children with Severe Acute Malnutrition : A Systematic Review and Meta-Analysis

    Get PDF
    Ready-to-use therapeutic food (RUTF) containing less dairy may be a lower-cost treatment option for severe acute malnutrition (SAM). The objective was to understand the effectiveness of RUTF containing alternative sources of protein (nondairy), or <50% of protein from dairy products, compared with standard RUTF in children with SAM. The Cochrane Library, MEDLINE, Embase, CINAHL, and Web of Science were searched using terms relating to RUTF. Studies were eligible if they included children with SAM and evaluated RUTF with <50% of protein from dairy products compared with standard RUTF. Meta-analysis and meta-regression were completed to assess the effectiveness of intervention RUTF on a range of child outcomes. The quality of the evidence across outcomes was assessed using the GRADE (Grading of Recommendations Assessment, Development and Evaluation) approach. A total of 5868 studies were identified, of which 8 articles of 6 studies met the inclusion criteria evaluating 7 different intervention RUTF recipes. Nondairy or lower-dairy RUTF showed less weight gain (standardized mean difference:-0.20; 95% CI:-0.26,-0.15; P < 0.001), lower recovery (relative risk ratio: 0.93; 95% CI: 0.87, 1.00; P = 0.046), and lower weight-for-age z scores (WAZ) near program discharge (mean difference:-0.10; 95% CI:-0.20, 0.0; P = 0.047). Mortality, time to recovery, default (consecutive absences from outpatient therapeutic feeding program visits), nonresponse, and other anthropometric measures did not differ between groups. The certainty of evidence was high for weight gain and ranged from very low to moderate for other outcomes. RUTF with lower protein from dairy or dairy-free RUTF may not be as effective as standard RUTF for treatment of children with SAM based on weight gain, recovery, and WAZ evaluated using meta-analysis, although further research is required to explore the potential of alternative formulations. This review was registered at https://www.crd.york.ac.uk/prospero/as CRD42020160762.publishedVersionPeer reviewe

    Childhood severe acute malnutrition is associated with metabolic changes in adulthood

    No full text
    BACKGROUND. Severe acute malnutrition (SAM) is a major contributor to global mortality in children under 5 years. Mortality has decreased; however, the long-term cardiometabolic consequences of SAM and its subtypes, severe wasting (SW) and edematous malnutrition (EM), are not well understood. We evaluated the metabolic profiles of adult SAM survivors using targeted metabolomic analyses. METHODS. This cohort study of 122 adult SAM survivors (SW = 69, EM = 53) and 90 age-, sex-, and BMI-matched community participants (CPs) quantified serum metabolites using direct flow injection mass spectrometry combined with reverse-phase liquid chromatography. Univariate and sparse partial least square discriminant analyses (sPLS-DAs) assessed differences in metabolic profiles and identified the most discriminative metabolites. RESULTS. Seventy-seven metabolite variables were significant in distinguishing between SAM survivors (28.4 ± 8.8 years, 24.0 ± 6.1 kg/m2) and CPs (28.4 ± 8.9 years, 23.3 ± 4.4 kg/m2) (mean ± SDs) in univariate and sPLS-DA models. Compared with CPs, SAM survivors had less liver fat; higher branched-chain amino acids (BCAAs), urea cycle metabolites, and kynurenine/tryptophan (KT) ratio (P < 0.001); and lower β-hydroxybutyric acid and acylcarnitine/free carnitine ratio (P < 0.001), which were both associated with hepatic steatosis (P < 0.001). SW and EM survivors had similar metabolic profiles as did stunted and nonstunted SAM survivors. CONCLUSION. Adult SAM survivors have distinct metabolic profiles that suggest reduced β-oxidation and greater risk of type 2 diabetes (BCAAs, KT ratio, urea cycle metabolites) compared with CPs. This indicates that early childhood SAM exposure has long-term metabolic consequences that may worsen with age and require targeted clinical management. FUNDING. Health Research Council of New Zealand, Caribbean Public Health Agency, Centre for Global Child Health at the Hospital for Sick Children. DST is an Academic Fellow and a Restracomp Fellow at the Centre for Global Child Health. GBG is a postdoctoral fellow of the Research Foundation Flanders.</p

    Organoids as a model to study intestinal and liver dysfunction in severe malnutrition

    Get PDF
    Hospitalized children with severe malnutrition face high mortality rates and often suffer from hepatic and intestinal dysfunction, with negative impacts on their survival. New treatments cannot be developed without understanding the underlying pathophysiology. We have established and characterized translational organoid models of severe malnutrition of the liver and the intestine. In these models, amino acid starvation recapitulates the expected organ-specific functional changes (e.g., hepatic steatosis, barrier dysfunction) accompanied by reduced mitochondrial and peroxisomal proteins, and altered intestinal tight junction proteins. Re-supplementation of amino acids or pharmacological interventions with rapamycin or fenofibrate lead to partial recovery. Restoration of protein levels aligned with signs of improved peroxisomal function in both organoids, and increased mitochondrial proteins and tight junction protein claudin-3 in intestinal organoids. We present two organoid models as novel tools to gain mechanistic insights and to act as a testing platform for potential treatments for intestinal and hepatic dysfunction in severe malnutrition

    Mutations in Plasmalemma Vesicle Associated Protein Result in Sieving Protein-Losing Enteropathy Characterized by Hypoproteinemia, Hypoalbuminemia, and HypertriglyceridemiaSummary

    Get PDF
    Background & Aims: Severe intestinal diseases observed in very young children are often the result of monogenic defects. We used whole-exome sequencing (WES) to examine genetics in a patient with a distinct severe form of protein-losing enteropathy (PLE) characterized by hypoproteinemia, hypoalbuminemia, and hypertriglyceridemia. Methods: WES was performed at the Centre for Applied Genomics, Hospital for Sick Children, Toronto, Canada, and exome library preparation was performed with the Ion Torrent AmpliSeq RDY Exome Kit. Functional studies were based on the identified mutation. Results: Using WES we identified a homozygous nonsense mutation (1072C>T; p.Arg358*) in the PLVAP (plasmalemma vesicle-associated protein) gene in an infant from consanguineous parents who died at 5 months of age of severe PLE. Functional studies determined that the mutated PLVAP mRNA and protein were not expressed in the patient biopsy tissues, presumably secondary to nonsense-mediated mRNA decay. Pathological analysis showed that the loss of PLVAP resulted in disruption of endothelial fenestrated diaphragms. Conclusions: The PLVAP p.Arg358* mutation resulted in the loss of PLVAP expression with subsequent deletion of the diaphragms of endothelial fenestrae, which led to plasma protein extravasation, PLE, and ultimately death. Keywords: Endothelium, Fenestrae, Hypertriglyceridemia, Hypoalbuminemia, Hypoproteinemia, Very Early Onset Inflammatory Bowel Disease, Monogenic Diseases, Protein-Losing Enteropathy, Whole-Exome Sequencin

    The role of the tryptophan-NAD + pathway in a mouse model of severe malnutrition induced liver dysfunction

    No full text
    Mortality in children with severe malnutrition is strongly related to signs of metabolic dysfunction, such as hypoglycemia. Lower circulating tryptophan levels in children with severe malnutrition suggest a possible disturbance in the tryptophan-nicotinamide adenine dinucleotide (TRP-NAD+) pathway and subsequently in NAD+  dependent metabolism regulator sirtuin1 (SIRT1). Here we show that severe malnutrition in weanling mice, induced by 2-weeks of low protein diet feeding from weaning, leads to an impaired TRP-NAD+  pathway with decreased NAD+ levels and affects hepatic mitochondrial turnover and function. We demonstrate that stimulating the TRP-NAD+  pathway with NAD+  precursors improves hepatic mitochondrial and overall metabolic function through SIRT1 modulation. Activating SIRT1 is sufficient to induce improvement in metabolic functions. Our findings indicate that modulating the TRP-NAD+  pathway can improve liver metabolic function in a mouse model of severe malnutrition. These results could lead to the development of new interventions for children with severe malnutrition

    Age and Diet Modulate the Insulin-Sensitizing Effects of Exercise:A Tracer-Based Oral Glucose Tolerance Test

    Get PDF
    Diet modulates the development of insulin resistance during aging. This includes tissue-specific alterations in insulin signaling and mitochondrial function, which ultimately affect glucose homeostasis. Exercise stimulates glucose clearance, mitochondrial lipid oxidation and enhances insulin sensitivity. It is not well known how exercise interacts with age and diet in the development of insulin resistance. To investigate this, oral glucose tolerance tests (OGTT) with a tracer were conducted in mice ranging from 4 to 21 months of age, fed a low- (LFD) or high-fat diet (HFD), with or without life-long voluntary access to a running wheel (RW). We developed a computational model to derive glucose fluxes, which were commensurate with independent values from steady-state tracer infusions. Both insulin sensitivity indices derived for peripheral tissues and liver (IS-P and IS-L, respectively) were steeply decreased by aging and a HFD. This preceded the age-dependent decline in the mitochondrial capacity to oxidize lipids. In LFD young animals, RW access enhanced the IS-P concomitantly with the muscle β- oxidation capacity. Surprisingly, RW access completely prevented the age-dependent IS-L decrease, but only in LFD animals. This study indicates, therefore, that endurance exercise can improve the age-dependent decline in organ-specific IS mostly in the context of a healthy diet.</p
    corecore