71 research outputs found

    Numerical considerations for the simulation of proppant transport through fractures

    Get PDF
    The final publication is available at Elsevier via https://doi.org/10.1016/j.petrol.2019.05.064. © 2019. This manuscript version is made available under the CC-BY-NC-ND 4.0 license http://creativecommons.org/licenses/by-nc-nd/4.0/Injection of a proppant slurry (fluid mixed with granular material) into a reservoir to keep fractures open is a common procedure in hydraulic fracturing treatments. This article presents the numerical methodology for simulation of proppant transport through a hydraulic fracture using the Finite Volume Method. Proppant models commonly used in the hydraulic fracture literature solve the linearized advection equation; this work presents solution methods for the nonlinear form of the proppant flux equation. The complexities of solving the nonlinear hyperbolic advection equation that governs proppant transport are tackled, particularly handling shock waves that are generated due to the nonlinear flux function and the spatially-varying width and pressure gradient along the fracture. A critical time step is derived for the proppant transport problem solved using an explicit solution strategy. A predictor-corrector algorithm is developed to constrain the proppant from exceeding the physically admissible range. The model is able to capture the mechanism of proppant bridging which occurs in sections of narrow fracture width, tip screen-out which occurs where fracture becomes saturated with proppant, and flushing of proppant into new fracture segments. The results are verified by comparing with characteristic solutions, and the model is used to simulate proppant transport through a KGD fracture.The authors acknowledge the support of Natural Sciences and Engineering Research Council of Canada (NSERC) for their support under a Discovery Grant and the support of an Early Researcher Award from the Ontario Ministry of Research and Innovation

    Enriched mixed finite element models for dynamic analysis of continuous and fractured porous media

    Get PDF
    The final publication is available at Elsevier via https://dx.doi.org/10.1016/j.cma.2018.08.011 © 2019. This manuscript version is made available under the CC-BY-NC-ND 4.0 license https://creativecommons.org/licenses/by-nc-nd/4.0/Enriched Finite Element Models are presented to more accurately investigate the transient and wave propagation responses of continuous and fractured porous media based on mixture theory. Firstly, the Generalized Finite Element Method (GFEM) trigonometric enrichments are introduced to suppress the spurious oscillations that may appear in dynamic analysis with the regular Finite Element Method (FEM) due to numerical dispersion/Gibbs phenomenon. Secondly, the Phantom Node Method (PNM) is employed to model multiple arbitrary fractures independently of the mesh topology. Thirdly, frictional contact behavior is simulated using an Augmented Lagrange Multiplier technique. Mixed Lagrangian interpolants, bi-quadratic for displacements and bi-linear for pore pressure, are used for the underlying FEM basis functions. Transient (non-wave propagation) response of fractured porous media is effectively modeled using the PNM. Wave propagation in continuous porous media is effectively modeled using the mixed GFEM. Wave propagation in fractured porous media is simulated using a mixed GFEM-enriched Phantom Node Method (PNM-GFEM-M). The developed mixed GFEM portion of the model is verified through a transient consolidation problem. Subsequently, the ability of the enriched FEM models to capture the dynamic response of fractured fully-saturated porous media under mechanical and hydraulic stimulations is illustrated. The superior ability of the PNM-GFEM-M in inhibiting spurious oscillations is shown in comparison against the regular finite element solutions of some impact problems. It is demonstrated that by embedding appropriate enrichment basis functions in both displacement and pore pressure fields the results obtained are more accurate than those obtained using standard finite element approximations or approximations in which only the displacement is enriched.Natural Sciences and Engineering Research Council of Canad

    Simulation of Induced Acoustic Emission in Fractured Porous Media

    Get PDF
    The final publication is available at Elsevier via https://doi.org/10.1016/j.engfracmech.2018.07.028 © 2018. This manuscript version is made available under the CC-BY-NC-ND 4.0 license http://creativecommons.org/licenses/by-nc-nd/4.0/Acoustic/microseismic Emissions (AE) in naturally fractured porous media are the result of local instability along internal interfaces and the sudden release of strain energy stored in the rock matrix. This rapid release of energy, stimulates high-frequency components of the dynamic response of the rock mass, inducing mechanical wave propagation. In this article an enriched finite element model is employed to concurrently simulate the interface instability and the induced wave propagation processes in a fractured porous media. Harmonic enrichment functions are used in the context of the Generalized Finite Element Method (GFEM) to suppress the spurious oscillations that can appear in wave propagation/dynamic modelings using regular finite elements. To model the fractures, the Phantom Node Method (PNM) is employed with the GFEM. The frictional contact condition at material interfaces is modeled using a stable augmented Lagrange multiplier approach. Through various parametric studies it’s shown that (i) decreasing the permeability leads to an increase in the frequency and a decrease in the amplitude of the acoustic signal; (ii) increasing viscous damping leads to narrower frequency spectrum and decreased magnitude of the emitted acoustic signal; (iii) increasing damping leads to a transition from transient wave propagation to diffusion-dominated AE response; (iv) increasing interface friction leads to more pronounced stick-slip behavior and higher amplitude AE-without interface friction there is no AE. Lastly, the numerical illustrations demonstrate the superior capability of the enriched model (in comparison with regular finite element models) in suppressing the spurious oscillations in AE solutions.Natural Sciences and Engineering Research Council || Ontario Ministry of Innovation and Researc

    A non-local plasticity model of stimulated volume evolution during hydraulic fracturing

    Get PDF
    The final publication is available at Elsevier via https://doi.org/10.1016/j.ijsolstr.2018.09.023� 2018. This manuscript version is made available under the CC-BY-NC-ND 4.0 license http://creativecommons.org/licenses/by-nc-nd/4.0/Hydraulic fracturing in naturally fractured rocks often leads to the creation of a stimulated zone in which the target rock formation is deformed and fractured by the reactivation and shear dilation of natural fractures and the plastic deformation, damaging, and fracturing of the bulk. In this paper, we present a novel mathematical model with the goal of simulating the evolution of the stimulated volume during hydraulic fracturing. This was achieved by introducing an equivalent continuum non-local poro-elastic-plastic zone of enhanced permeability for the stimulated region, characterized by an internal length scale. The non-local plastic constitutive behavior of the rock, combined with the classical Biot�s poroelastic theory, was implemented using a new implicit C0 non-local finite element method. A predictor-corrector return algorithm for the non-local plasticity model was formulated as an extension of the classical plasticity algorithm. To improve the performance of the iterative solution scheme, a consistent algorithmic stiffness tangent modulus was developed. First, the elastic-plastic constitutive behavior of the proposed methodology is verified using the standard non-porous biaxial compression test with strain softening behavior. Next, it is verified that the poro-elastic-plastic model correctly simulates the evolution of the stimulated zone and the subsequent change in the flow and fluid pressure for several hydraulic fracturing examples under various far-field in-situ stress conditions. Lastly, the non-local poro-elastic-plastic model is shown to be mesh-independent and capable of capturing a wide range of complex fracturing behavior.Natural Sciences and Engineering Research Council of Canad

    A High-Value, Low-Cost Bubble Continuous Positive Airway Pressure System for Low-Resource Settings: Technical Assessment and Initial Case Reports

    Get PDF
    Acute respiratory infections are the leading cause of global child mortality. In the developing world, nasal oxygen therapy is often the only treatment option for babies who are suffering from respiratory distress. Without the added pressure of bubble Continuous Positive Airway Pressure (bCPAP) which helps maintain alveoli open, babies struggle to breathe and can suffer serious complications, and frequently death. A stand-alone bCPAP device can cost 6,000,tooexpensiveformostdevelopingworldhospitals.Here,wedescribethedesignandtechnicalevaluationofanew,ruggedbCPAPsystemthatcanbemadeinsmallvolumeforacost−of−goodsofapproximately6,000, too expensive for most developing world hospitals. Here, we describe the design and technical evaluation of a new, rugged bCPAP system that can be made in small volume for a cost-of-goods of approximately 350. Moreover, because of its simple designラconsumergrade pumps, medical tubing, and regulators—it requires only the simple replacement of a ,$1 diaphragm approximately every 2 years for maintenance. The low-cost bCPAP device delivers pressure and flow equivalent to those of a reference bCPAP system used in the developed world. We describe the initial clinical cases of a child with bronchiolitis and a neonate with respiratory distress who were treated successfully with the new bCPAP device

    Clinical Manifestations and Case Management of Ebola Haemorrhagic Fever caused by a newly identified virus strain, Bundibugyo, Uganda, 2007-2008

    Get PDF
    A confirmed Ebola haemorrhagic fever (EHF) outbreak in Bundibugyo, Uganda, November 2007-February 2008, was caused by a putative new species (Bundibugyo ebolavirus). It included 93 putative cases, 56 laboratory-confirmed cases, and 37 deaths (CFR = 25%). Study objectives are to describe clinical manifestations and case management for 26 hospitalised laboratory-confirmed EHF patients. Clinical findings are congruous with previously reported EHF infections. The most frequently experienced symptoms were non-bloody diarrhoea (81%), severe headache (81%), and asthenia (77%). Seven patients reported or were observed with haemorrhagic symptoms, six of whom died. Ebola care remains difficult due to the resource-poor setting of outbreaks and the infection-control procedures required. However, quality data collection is essential to evaluate case definitions and therapeutic interventions, and needs improvement in future epidemics. Organizations usually involved in EHF case management have a particular responsibility in this respect

    Effect of priming interval on reactogenicity, peak immunological response, and waning after homologous and heterologous COVID-19 vaccine schedules: exploratory analyses of Com-COV, a randomised control trial

    Get PDF
    BackgroundPriming COVID-19 vaccine schedules have been deployed at variable intervals globally, which might influence immune persistence and the relative importance of third-dose booster programmes. Here, we report exploratory analyses from the Com-COV trial, assessing the effect of 4-week versus 12-week priming intervals on reactogenicity and the persistence of immune response up to 6 months after homologous and heterologous priming schedules using the vaccines BNT162b2 (tozinameran, Pfizer/BioNTech) and ChAdOx1 nCoV-19 (AstraZeneca).MethodsCom-COV was a participant-masked, randomised immunogenicity trial. For these exploratory analyses, we used the trial's general cohort, in which adults aged 50 years or older were randomly assigned to four homologous and four heterologous vaccine schedules using BNT162b2 and ChAdOx1 nCoV-19 with 4-week or 12-week priming intervals (eight groups in total). Immunogenicity analyses were done on the intention-to-treat (ITT) population, comprising participants with no evidence of SARS-CoV-2 infection at baseline or for the trial duration, to assess the effect of priming interval on humoral and cellular immune response 28 days and 6 months post-second dose, in addition to the effects on reactogenicity and safety. The Com-COV trial is registered with the ISRCTN registry, 69254139 (EudraCT 2020–005085–33).FindingsBetween Feb 11 and 26, 2021, 730 participants were randomly assigned in the general cohort, with 77–89 per group in the ITT analysis. At 28 days and 6 months post-second dose, the geometric mean concentration of anti-SARS-CoV-2 spike IgG was significantly higher in the 12-week interval groups than in the 4-week groups for homologous schedules. In heterologous schedule groups, we observed a significant difference between intervals only for the BNT162b2–ChAdOx1 nCoV-19 group at 28 days. Pseudotyped virus neutralisation titres were significantly higher in all 12-week interval groups versus 4-week groups, 28 days post-second dose, with geometric mean ratios of 1·4 (95% CI 1·1–1·8) for homologous BNT162b2, 1·5 (1·2–1·9) for ChAdOx1 nCoV-19–BNT162b2, 1·6 (1·3–2·1) for BNT162b2–ChAdOx1 nCoV-19, and 2·4 (1·7–3·2) for homologous ChAdOx1 nCoV-19. At 6 months post-second dose, anti-spike IgG geometric mean concentrations fell to 0·17–0·24 of the 28-day post-second dose value across all eight study groups, with only homologous BNT162b2 showing a slightly slower decay for the 12-week versus 4-week interval in the adjusted analysis. The rank order of schedules by humoral response was unaffected by interval, with homologous BNT162b2 remaining the most immunogenic by antibody response. T-cell responses were reduced in all 12-week priming intervals compared with their 4-week counterparts. 12-week schedules for homologous BNT162b2 and ChAdOx1 nCoV-19–BNT162b2 were up to 80% less reactogenic than 4-week schedules.InterpretationThese data support flexibility in priming interval in all studied COVID-19 vaccine schedules. Longer priming intervals might result in lower reactogenicity in schedules with BNT162b2 as a second dose and higher humoral immunogenicity in homologous schedules, but overall lower T-cell responses across all schedules. Future vaccines using these novel platforms might benefit from schedules with long intervals
    • …
    corecore