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Abstract

Injection of a proppant slurry (fluid mixed with granular material) into a reservoir to keep fractures open is a
common procedure in hydraulic fracturing treatments. This article presents the numerical methodology for
simulation of proppant transport through a hydraulic fracture using the Finite Volume Method. Proppant
models commonly used in the hydraulic fracture literature solve the linearized advection equation; this work
presents solution methods for the nonlinear form of the proppant flux equation.

The complexities of solving the nonlinear hyperbolic advection equation that governs proppant transport
are tackled, particularly handling shock waves that are generated due to the nonlinear flux function and
the spatially-varying width and pressure gradient along the fracture. A critical time step is derived for the
proppant transport problem solved using an explicit solution strategy. A predictor-corrector algorithm is
developed to constrain the proppant from exceeding the physically admissible range. The model is able to
capture the mechanism of proppant bridging which occurs in sections of narrow fracture width, tip screen-out
which occurs where fracture becomes saturated with proppant, and flushing of proppant into new fracture
segments. The results are verified by comparing with characteristic solutions, and the model is used to
simulate proppant transport through a KGD fracture.

Declarations of interest: none

Keywords: Proppant transport, Hydraulic fracture, Proppant bridging, Multiphase Flow, Nonlinear
advection, Finite volume

1. Introduction

Hydraulic fracturing (HF) is a reservoir stimulation treatment that increases rock permeability by the
injection of high-pressure fluid into a formation. In HF treatments, proppant (granular material, typically
sand) is injected into the wellbore to keep the fracture network open after pumping ceases. Proppant usage
worldwide has increased drastically since 2009, with close to 92 billion pounds of proppant pumped in 2013
[1]. The final position of the slurry–the mixture of wellbore fluids and proppant–in the fracture network
following injection plays a large role in determining the final permeability of the treated volume. Simulation
of proppant transport through a fracture is a topic of research that can lead to a better understanding of the
permeability increase and ultimately help guide the design of the hydraulic fracturing treatment. A review
of the geomechanics and numerical methods used in modeling hydraulic fracturing is provided by Adachi et
al. [2], Detournay [3], Hattori et al. [4], and Lecampion et al. [5].

Of the various mechanisms involved in hydraulic fracturing, the focal point of this paper is on the
transport of proppant through hydraulic fractures. An extensive review of the fluid mechanics associated with
the multiphase flow in hydraulic fracturing has been performed by Osiptsov [6]. Early researchers tackled
the problem of modelling proppant transport using simplified models to find the position of proppant over
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time through a stationary channel and focused on the mechanism of proppant settling towards the bottom
of the channel [7, 8]. Mixture models have also been used, which are a more general model that solve for the
conservation of mass of the slurry and the proppant to advance the proppant concentration [2, 9–12]. These
models assume that the phases are fully mixed and treat the slurry as a fluid with a modified viscosity and
density based on the concentration of proppant. The fluid and proppant are assumed to be incompressible
and the fracture width is assumed to be small enough compared to the other fracture dimensions that
lubrication theory holds. The most basic form of the mixture model assumes that the slurry components
(fluid and proppant particles) travel at the same velocity. The difference in velocity between the slurry and
the proppant particles has been considered by some authors, but in most models only slip along the height
of the fracture due to convection and settlement is accounted for. A notable exception is the model by
Dontsov and Peirce [13], which provides a slip related to Darcy flow of fluid through the proppant pack once
the proppant concentration reaches a saturated level. Two-phase modelling of proppant transport has also
been approached [14], in which both the conservation of momentum and mass are solved for the fluid and
the proppant particles. This type of model provides a deeper understanding of the interaction between the
two phases but is computationally expensive.

A mixture model is considered in this paper due to its efficiency and ease of implementation with other
reservoir models. There are three governing equations that are typically solved for in hydraulic fracture
simulations: (I) conservation of momentum governing rock deformation, (II) conservation of mass governing
slurry flow, and (III) conservation of mass governing proppant flow. The second equation inherently incor-
porates the conservation of mass of the carrier fluid. These three equations are used to solve for the rock
mass displacement, fluid pressure, and proppant concentration, respectively. All equations are functions
of the three independent variables and are strongly coupled in terms of the physical processes involved.
Many models in the literature solve the rock deformation (I) and slurry flow (II) equations simultaneously
in a monolithic scheme (i.e., strongly coupled), using the proppant concentration from the previous time
step[2, 10–12, 15]. Once a converged solution is obtained for the fracture width and slurry pressure, the
proppant transport equation (III) is then solved to update the proppant concentration for the next time step
while holding the fracture width and fluid velocity constant. The proppant update is considered a sequential
coupling algorithm. However, most of these models don’t iterate to obtain a converged solution for each
step of the analysis, yielding a loosely coupled scheme which may lead to inaccuracies in the final solution.

The focus of this paper is on the solution of the proppant transport equation (III), keeping in mind its
solution as a part of a sequentially coupled HF solution. The continuity equation that governs the proppant
flow through the fracture is a nonlinear hyperbolic advection equation. The advection equation has been
solved in hydraulic fracture models using the finite volume method [10, 11, 16–18], the finite difference
method [12, 15], and the finite element method [9]. Most models are solved using an Eulerian frame of
reference, but a solution using a Lagrangian frame of reference is also possible [19]. The coupled mixture
models in the literature assume a constant slurry velocity during the proppant transport update, which often
leads to a linear advection equation. Finite volume schemes have been used to solve nonlinear advection of
proppant in a hydraulic fracture [11, 16], although the slurry velocity is also held constant during the solution
of the proppant transport equation in these models. Finite volume schemes have also been used by various
researchers to model nonlinear hyperbolic equations in similar fields, such as the work by Varadarajan and
Hammond [20] in modeling gas migration and Lorentzen and Fjelde [21] in modeling multiphase hydrocarbon
flow in pipelines. Numerically, solving the nonlinear equation presents additional challenges due to the shocks
created in the solution that must be considered in the approximation. Oscillations may be introduced into
the solution if the characteristic speed at the cell edges is not properly approximated. An entropy correction
must be included in the formulation to handle rarefaction waves. Additionally, proppant concentration
constraints must be imposed on the solution so that the approximation does not lead to results that are
outside the physically possible limits since this is not handled naturally by the governing equation.

The purpose of this paper is to present the numerical methodology for solving the nonlinear hyperbolic
partial differential equation that describes proppant transport through a hydraulic fracture in one-dimension
using the finite volume method. A critical time step for the explicit nonlinear advection problem is derived
for the proppant transport problem which works for all variations of the flux function. The methodology
presented uses a new predictor-corrector algorithm to constrain the proppant from exceeding the physically
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admissible range. Additionally, an application specific parameter that avoids introducing oscillations is found
which is used to identify where the solution is smooth or discontinuous in approximating the characteristic
speed at cell edges. The one-dimensional model presented in this paper is not able to capture all the relevant
phenomena associated with proppant transport, such as settling, proppant bed formation, dune transport,
and viscous fingering. The model can capture the shock waves generated due to the nonlinear flux function,
and the effects of spatially-varying width and pressure gradient along the fracture. It can also capture the
mechanism of proppant bridging, or the impediment of proppant flow when the fracture width is too narrow.
The numerical methodology presented may be applied to a two-dimensional to capture other mechanisms
of interest.

The governing equations for the proppant particle transport are derived in Section 2. Possible flux
functions are described in this section. In Section 3, the Finite Volume Method is used to discretize the
governing equations and the approximation of the finite volume fluxes is presented. This section includes
the derivation of a critical time step for proppant transport, a discussion of the source of shocks in the
nonlinear problem, the approximation of the characteristic speed and flux at the cell edges, and the boundary
conditions imposed on the solution. A new algorithm for constraining the proppant concentration below
the saturation limit is described in this section as well. Various numerical results are then discussed in
Section 4, including proppant transport at the inlet, at a plug, through an elliptical fracture, and through
a plane-strain KGD fracture. The solution is verified by comparing with characteristic solutions. Solutions
are presented using a variety of effective viscosity expressions from the literature. The maximum injection
rate permissible before proppant builds up and plugs at the fracture inlet is found, and the efficacy of the
new constraint algorithm is studied. Conclusions are presented in the last section of the article.

2. Governing equations

The governing equation for proppant transport in a fracture is described in this section and placed in the
context of the slurry (fluid and proppant mixture) flow. A mixture model is used which assumes that the
fluid and proppant phases are fully mixed and that there is an equilibrium in mass, momentum and energy
transfer [2]. Consider a two-dimensional fracture plane with a reference coordinate system, x, running along
the length of the fracture at the centerline from the wellbore to the fracture tip, as depicted in Figure 1.
The width of the fracture, w(x), is described along the fracture length and the fracture height is assumed
to extend a large distance into the domain, such that plane strain conditions apply. Assuming symmetry,
only half of the fracture is modeled, with the point closest to the wellbore (or inlet) located at x0 and the
tip of the fracture at xtip.

2.1. Slurry equations

The equations for conservation of mass for the proppant and fluid phase, respectively, are given in
Equations (1) and (2) below. Summing these equations leads to the conservation of mass for the slurry,
given in Equation (3).

proppant mass :
∂

∂t
(φwρp) +

∂Qp(φ,w, p,x)

∂x
= φinjQinjδ(x− x0) (1)

fluid mass :
∂

∂t
((1− φ)wρf ) +

∂Qf(φ,w, p,x)

∂x
+Qsink = (1− φinj)Qinjδ(x − x0) (2)

slurry mass :
∂(wρ)

∂t
+

∂Q(φ,w, p,x)

∂x
+Qsink = Qinjδ(x− x0) (3)

In these equations, φ(x, t) is the average volumetric concentration of proppant particles across the fracture
width at time t. The density of the proppant particles and fluid, respectively, are given by ρp and ρf , while
the density of the slurry is ρ = φρp + (1 − φ)ρf . The mass flux of the proppant and fluid per unit fracture
height are denoted by Qp and Qf , respectively. The total mass flux of the slurry, Q = Qp + Qf , is the
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Figure 1: Domain of interest for proppant transport model is along the centerline of a horizontal plane of a vertical fracture

sum of the proppant and fluid mass fluxes. A constitutive law defines the relationship between the flux and
pressure gradient of the slurry, ∂p/∂x, described in further detail below. The source term, Qinj , is the mass
flux of slurry per unit area of fracture injected at the wellbore, x0. The sink term, Qsink, accounts for fluid
leaving the fracture in the form of leak-off into the formation.

Any two of the equations (1)-(3) can be solved to obtain the unknown variables: fluid pressure, p,
and proppant concentration, φ. Mixture models used to simulate hydraulic fractures in the literature
typically solve the proppant (1) and slurry (3) conservation equations along with the elasticity equation
that describes rock deformation to obtain the fracture width. In these models, the converged solution of the
rock deformation and slurry flow is obtained first and then the proppant conservation law is used to update
the concentration for the next time step.

The missing equation is a constitutive law which relates the mass flux to the concentration and pressure
gradient. The most commonly used assumption is that of Poiseuille flow, with a correction for the viscosity
of the slurry that is dependent on the proppant concentration, µ(φ), described in further detail in Section
2.3. Hammond [22] defines these constitutive laws assuming both a homogeneous slurry and a close-packed
core sheet. In this work, a homogeneous slurry is assumed. Solving the conservation of momentum of the
slurry mixture using lubrication theory, the slurry velocity, v, as a function of the distance along the fracture
width, y, is obtained,

v =
1

2µ(φ)

∂p

∂x

(
y2 − yw

)
(4)

The velocity of the proppant component of the slurry, vp, is defined by assuming a slip velocity between
the slurry and the proppant, vslip = vp − v. In the literature, this slip velocity has been related to proppant
settling but most models do not include slip in the direction of the fracture length. In the context of the
one-dimensional model used for this work, the proppant is assumed to flow with the same velocity as the
slurry (vp = v). The mass flux of the slurry, Q, and the proppant, Qp, are defined respectively as

Q =

∫ w

0

ρvdy = −ρ
w3

12µ(φ)

∂p

∂x
(5)

Qp =

∫ w

0

φρpvpdy = −φρp
w3

12µ(φ)

∂p

∂x
(6)
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Coupled HF models in the literature typically hold the slurry velocity, v, constant during the proppant
update, neglecting its dependence on the proppant equation as shown in Equation 4. Therefore, in these
models the mass flux of the slurry is linearized to Qp = φwρpv. The work in this paper does not make this
assumption, maintaining the nonlinear form of the proppant flux.

2.2. Proppant equation

The focus of this paper is solely on the solution of the continuity equation of the proppant. The specific
form of the equation depends on the assumptions made about the effective viscosity of the slurry, which is
described in further detail in the following section. The mass form of conservation equation (1) is rewritten
in volumetric form for incompressible proppant as

∂(φw)

∂t
+

∂q

∂x
= φinjqinjδ(x− x0) (7)

where q = Qp/ρp is the volumetric flux of the proppant per unit height of the fracture and qinj is the
volumetric injection flux per unit area of the channel. The aim of this work is to discuss the solution of
the nonlinear advection equation (7) for proppant flow in a fracture. Dividing equation (6) by the proppant
density, the volumetric flux of the proppant is given as

q(φ, µ(φ), w, p,x) = −φ
w3

12µ(φ)

∂p

∂x
(8)

In this paper, the fracture width, w(x, t), and the pressure gradient, ∂p(x, t)/∂x, along the fracture length
are assumed to be known values taken from the solution of the rock deformation and slurry flow equations,
as would occur in a sequential solution to the HF model. The independent variable is the average proppant
concentration, φ. In the context of the loosely-coupled models in the literature, this work is focused on the
proppant update, excluding the solution of the solid and slurry equations. Since the effective viscosity, µ(φ),
is a function of the proppant concentration, substituting the constitutive law for the flux (8) into (7) leads
to a nonlinear advection equation.

2.3. Flux functions

Various expressions have been postulated for the effective viscosity of the slurry as a function of the
proppant concentration, µ(φ). The first viscosity expression was proposed by Einstein [23], but is applicable
only for dilute suspensions. Later expressions were proposed which represent a range of slurries, from dilute
to saturated suspensions. Several commonly used expressions, with both theoretical and experimental
origins, are provided in Table 1. These expressions are written in terms of the viscosity of the carrier fluid,
µ0. Many other functions have been proposed in the literature. A comparison of expressions for effective
viscosity in the context of dense suspensions is given by Stickel and Powell [24].

The fully saturated concentration, φm, is defined as the maximum packing fraction of the proppant.
This is the upper limit of physically allowable proppant concentration in a fracture. Values of saturated
concentration in the literature range from 0.52 for loose-packed spheres [25] to 0.74 for hexagonal close-
packing of monodisperse spherical particles [26]. In this work, a value of 0.64 is used, which is the value for
random close-packing of monodisperse spherical particles [26].

The proppant flux associated with several of the expressions for effective viscosity from Table 1 for a
range of normalized proppant concentration, φ/φm, between 0 and 1 are shown in Figure 2. The curves
are defined using a saturated proppant concentration of 0.64, a carrier fluid viscosity of 1 mPa·s, a fracture
width of 1 mm, and a pressure gradient of -1 kPa/m. These effective viscosities share the property that as
the proppant concentration approaches zero, the effective viscosity approaches the viscosity of the carrier
fluid. This limit describes pure fluid flow and the proppant flux also goes to zero at this limit.

At the limit where the proppant concentration reaches the saturation point, the proppant flux should
also go to zero since it is too packed to flow. From Figure 2 it can be seen that the expressions used by
Einstein [23] and Batchelor [27] for effective viscosity do not behave in the expected manner as the proppant
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reaches the saturation point, because the expressions predict a flux at high concentrations which do not
account for packing of the proppant. These effective viscosity relationships are thus excluded from further
study here. The relationships postulated by Eskin and Miller [28], Eilers [29], and Krieger and Dougherty
[30] incorporate the expected behaviours in the limit and will be further studied.

Table 1: Effective viscosity, µ(φ)

Expression Source

µ(φ) = µ0(1 +Bφ) B = 2.5 1 Einstein (1906) [23]

µ(φ) = µ0

(
1 +Bφ+B1φ

2 + ...
)

B1 = 7.6 2 Batchelor (1977) [27]

µ(φ) = µ0

(
1 +Bφ+B1φ

2 +B2 exp(B3φ)
)

B1 = 10
Eskin and Miller (2008) [28]B2 = 0.0019

B3 = 20
B1 = 10.05

Thomas (1965) [31]B2 = 0.00273
B3 = 16.6

µ(φ) = µ0

(

1− φ

φm

)−β

β = 2.5φm
3 Krieger and Dougherty (1959) [30]

β = 2.5 Nicodemo et. al. (1974) [32]
β = 2 Maron and Pierce (1956) [33]

β = 1.5 Barree and Conway (1994) [34]
β = 1.82 Krieger (1972) [35]
β = 1.89 Scott (1984) [36]

µ(φ) = µ0

[

1 +

(
1.25φ

1− φ/φm

)]2

Eilers (1941) [29]

1 Also been used with 1.5 ≤ B ≤ 5 [26]
2 Also been used with 7.35 ≤ B1 ≤ 14.1 [26]
3 Also been used with 1 ≤ β ≤ 3 [2]

2.4. Initial and Boundary Conditions

The conditions required to solve the proppant transport problem are described in this section. A hyper-
bolic problem requires initial conditions, defining the proppant concentration in the fracture at the start of
the simulation by φ0,

φ(x, 0) = φ0(x), φ0 ∈ C−1 (9)

At the fracture tip, proppant is prevented from exiting the fracture by applying a solid wall boundary
condition which restricts proppant flow,

q(xtip, t) = 0 (10)

Based on physical limitations, the proppant concentration is constrained to non-negative values less than
or equal to the saturation concentration,

0 ≤ φ ≤ φm (11)

Numerical methods don’t constrain the solution from exceeding the physically admissible limits, so an
additional algorithm is implemented in Section 3.6 to explicitly constrain the problem.

Finally, proppant bridging, or arching, occurs when particles become confined between the fracture
faces at very small fracture widths. The threshold fracture width at which the particles form a bridge is a

6



M
ANUSCRIP

T

 

ACCEPTE
D

ACCEPTED MANUSCRIPT

Figure 2: Proppant flux, q, for a range of normalized proppant concentrations with w=1 mm, ∂p/∂x=-1 kPa/m, φm = 0.64,
and µ0 = 1mPa · s

function of the average proppant diameter [37]. In this work, the proppant is restricted from flowing through
a fracture width smaller than 3 proppant diameters in size. This is expressed in the formulation as

q(x, t) = 0 if w < 3 · (2a) (12)

in which a is the average proppant radius.

3. Finite volume discretization

The finite volume method used to solve the governing equation is described in detail in this section.
The one-dimensional fracture is discretized into N evenly-spaced cells of length ∆x, as depicted in Figure
3. A node is placed at the center of each cell, each associated with an unknown nodal value of proppant
concentration, φi, and known values of fracture width, wi, and fluid pressure, pi.

Figure 3: Finite Volume Mesh

The governing equation (7) is integrated over a single cell associated with node i over a time step (∆t)
from time tn to tn+1,

∫ tn+1

tn

xi+1/2∫

xi−1/2

∂(φw)

dt
dxdt+

∫ tn+1

tn

xi+1/2∫

xi−1/2

∂q

∂x
dxdt = 0 (13)

in which xi±1/2 denote the edges of cell i. The source term due to injection is neglected in the formulation
and added later as a boundary condition. In the remainder of the text, the superscript n denotes a variable
evaluated at the current time tn, and the subscript i denotes the variable evaluated at the position xi, i.e.,
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the proppant concentration at position xi along the fracture and time tn is φn
i = φ(xi, tn). The volumetric

proppant flux at location xi and time tn is denoted by qni = q(φn
i , µ(φ

n
i ), w

n
i , p

n
,xi). Using the fundamental

theorem of calculus the differential terms are eliminated from the integral equation,

xi+1/2∫

xi−1/2

[
(φw)n+1 − (φw)n

]
dx+

∫ tn+1

tn

[
qi+1/2 − qi−1/2

]
dt = 0 (14)

Using the midpoint numerical integration rule for the first term and adopting explicit time integration
(forward Euler), the discrete equation is obtained,

[
(φw)n+1

i − (φw)ni
]
∆x+

[

qni+1/2 − qni−1/2

]

∆t = 0 (15)

Rearranging, the standard form for the explicit finite volume formulation is obtained,

(φw)n+1
i = (φw)ni − ∆t

∆x

[

qni+1/2 − qni−1/2

]

(16)

The finite volume method is conservative along the cell edges since any flux leaving or entering a cell
leads to a flux entering or leaving a neighbour cell. This means the total mass in the domain is preserved and
only changes due to fluxes at the boundaries. The difficulty in the finite volume method is in approximating
the proppant flux terms at the cell edges, qni±1/2.

The rest of this section describes the numerical methodology used to approximate the proppant flux at
the cell edges. First, the characteristic speed of proppant is defined at the cell edges. Then, the characteristic
speed is used to derive an estimate of the critical time step for proppant transport problems. The types
of shock waves encountered in the solution of the nonlinear advection problem are described to define the
scenarios that must be addressed in the approximation of the proppant fluxes, qni±1/2. Finally, the high-

resolution proppant flux approximation (a combination of the Godunov method and Lax-Wendroff method)
at the cell edges is described.

3.1. Characteristic speed of proppant

The solution to the nonlinear advection equation is dependent on the characteristic speed of the proppant,
which is the speed, s, at which a constant proppant concentration profile travels through the domain,

s =
∂q

∂(φw)
=

∂

∂(φw)

(

−φ
w3

12µ(φ)

∂p

∂x

)

(17)

The proppant characteristic speed, s, for various functions of effective viscosity is plotted over the range
of normalized proppant concentrations in Figure 4 for a fracture width of 1 mm, a pressure gradient of -1
kPa/m, a fluid viscosity of 1 mPa·s and a maximum proppant concentration of 0.64. These curves are all
characterized by being greater than zero for low proppant concentrations, signifying that proppant travels in
the direction of slurry flow. The characteristic speed crosses into the negative range between 0.2φm−0.5φm.

The proppant characteristic speed should not be confused with the direction of slurry flow. For a
nonlinear advection problem, the solution remains constant along the characteristic curve, which has a slope
defined by the characteristic speed. For typical fracture conditions with a negative pressure gradient inside
the fracture, the proppant flux is always positive (heading towards the tip of the fracture), as shown in
Figure 2. However, the characteristic speed is negative for higher proppant concentrations, as shown in
Figure 4. Although the slurry is moving towards the tip of the fracture, a negative characteristic speed
signifies that the net amount of proppant carried forward is limited so that the concentration builds up in
the direction opposite to the flow. The curves in Figure 2 show that the characteristic speed of the nonlinear
flux functions naturally captures the reversal of proppant build-up direction as the concentration increases.
The sudden change in direction of characteristic speed is the cause of shock waves in the solution for a
nonlinear advection problem. The concentration at which the characteristic speed changes sign is called
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Figure 4: Approximate characteristic speed for a constant fracture width (1 mm), pressure gradient (-1 kPa/m), and fluid
viscosity (1 mPa·s)

the stagnation point (or sonic point) [38], and it is shown in later sections that it is important to define
the stagnation point to locate the origin of a shock wave. The stagnation point, φs, for different effective
viscosity functions is provided in Table 2.

Table 2: Stagnation point for different effective viscosity functions, independent of width, w, and pressure gradient, p,x

Effective viscosity function Stagnation point, φs

Eskin and Miller 0.22
Eilers 0.37φm

Krieger-Dougherty, β = 1 0.50φm

Krieger-Dougherty, β = 2 0.33φm

Krieger-Dougherty, β = 3 0.25φm

The approximation of the proppant flux at the cell edges depends on the value of the proppant char-
acteristic speed at the cell edges, denoted by sni±1/2. Due to the complexity of the proppant flux function,

an explicit expression for the characteristic speed (17) is difficult to obtain, so an approximation is used.
The proppant characteristic speed is approximated as the shock speed using the Rankine-Hugoniot jump
condition, or as the approximate characteristic speed at the cell center if there is no jump in the solution,
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si+1/2 =







qi+1 − qi
(φw)i+1 − (φw)i

, |(φw)i+1 − (φw)i| > εs|(φw)i|

1

wi

∂q

∂φ

∣
∣
∣
xi

, |(φw)i+1 − (φw)i| ≤ εs|(φw)i|
(18)

si−1/2 =







qi − qi−1

(φw)i − (φw)i−1

, |(φw)i − (φw)i−1| > εs|(φw)i|

1

wi

∂q

∂φ

∣
∣
∣
xi

, |(φw)i − (φw)i−1| ≤ εs|(φw)i|
(19)

The variable εs is a small value used to determine whether the jump in φw is approaching zero and taken
as 0.5 for problems in this paper. This value is surprisingly large, but smaller values were found to create
oscillations in the solution for proppant transport problems.

3.2. Critical time step for proppant transport

The stable time step size for the explicit equation is limited according to the Courant-Friedrichs-Lewy
(CFL) stability condition,

∆t ≤ ∆x

snmax

(20)

in which snmax is the maximum characteristic speed present throughout the domain at time tn. An
explicit expression for the characteristic speed is difficult to obtain for the nonlinear proppant flux since the
term being advected is (φw). Hence, using the assumption that the fracture width is constant in the time
step, it is approximated as

snmax = max

(
∂q(φ,w)

∂(φw)

)

≈ max

(
1

w

∂q(φ,w)

∂φ

)

, 0 ≤ φ ≤ 1

(21)

It is interesting to note that the maximum characteristic speed of the proppant occurs at zero concen-
tration for all the effective viscosity relationships shown in Figure 2. Therefore, the critical time step is
the same for any selected function of effective viscosity, so long as the concentration is zero somewhere in
the domain. A conservative estimate of the time step may be calculated using the proppant flux at zero
concentration irrespective of the effective viscosity relationship chosen.

snmax ≈ max

(−wn
i
2

12µ0

∂pni
∂x

)

, ∀i ∈ [0, N ] (22)

3.3. Shock waves in proppant transport problems

The sources of numerical complexity of nonlinear advection problems are the shocks that appear in
the solution. The solution becomes non-smooth, and the jumps in the proppant concentration propagate
throughout the domain. The jumps in proppant concentration must be properly taken into account when
approximating the flux at the cell edges. This section discusses the types of shock waves that arise in the
propagation of proppant, and the approximation of edge fluxes is described in detail in Section 3.4. There
are four types of shocks to account for when approximating the proppant flux at cell edges:

1. the proppant concentration jumps from cell edge to cell edge because the approximate solution obtained
using the finite volume method is assumed to be constant throughout the cell (discontinuities propagate
from the cell edges, due to the discontinuous nature of the solution);
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2. the proppant concentration builds up in one location and the build-up creates a shock that travels
through the fracture (discontinuities due to characteristic curves merging between the cell centers
creating a compression wave);

3. the proppant concentration disperses from an area of high concentration into parts of the fracture
with low concentration (discontinuities due to characteristic curves diverging between the cell centers
creating a rarefaction wave); and

4. the width or pressure gradient changes along the fracture, causing the proppant concentration to
change suddenly (discontinuities due to jump in characteristic speed at cell edges).

The first type of shock that is created in the solution is a byproduct of the piecewise constant approx-
imation of φ used in the finite volume method. The proppant concentration is only approximated at the
center of each cell, representing the average concentration throughout the cell. At each cell edge, there is a
jump in the solution which creates a jump in the characteristic speed, or the speed at which the proppant
is transported through the fracture. Considering the case where the concentrations in adjacent cells are
either both above the stagnation point, φs, or both below the stagnation point, the jump in the solution
for proppant concentration can lead to the creation of either left-travelling or right-travelling shock waves.
The creation of these shock waves is depicted in Figure 5, where the jump in proppant concentration at cell
edges and the corresponding characteristic curves are shown for left- and right-travelling waves in Figures
5a and 5b, respectively. The top half of each figure depicts the portion of the fracture width filled with
proppant (φw) for two adjacent finite volume cells, with the proppant concentration at the cell center shown
in red and the cell edge represented by a dotted line. The bottom half of the figures shows the idealized
characteristic curves for the proppant in each of the cells. The characteristic curve represents the curve in
time and space along which the solution is constant, with the slope of the curve representing the proppant
characteristic speed, s. In both scenarios shown in Figures 5a and 5b, the characteristic speed on either side
of the cell edge is travelling in the same direction. The resulting shock wave has a magnitude defined by the
Rankine-Hugoniot jump condition as given in Equations 18-19.

(a) Right-traveling shock wave propagating from
the cell edge due to the discontinuous nature of
the solution

(b) Left-traveling shock wave propagating from
the cell edge due to the discontinuous nature of
the solution

Figure 5: Visualization of characteristic curves during formation of shock waves propagating due to discontinuity in solution
at cell edge

The second type of shock wave occurs when the proppant in each adjacent cell is travelling towards
the same edge and builds up. In HF simulations, this type of shock wave occurs during the formation and
growth of a plug. The accumulation of proppant concentration creates a shock wave that travels through the
domain. This discontinuity stems from merging of characteristic curves within a cell, as depicted in Figure
6a, creating a compression wave. The characteristic speed is positive in the left cell, and negative in the
right cell, with the solution in each adjacent cell lying on either side of the stagnation point. The resulting
shock wave is naturally captured by approximating the characteristic speed using the Rankine-Hugoniot
jump condition.
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The third type of shock wave is generated when a build-up of proppant disperses into areas of low
proppant concentration, as occurs when a proppant plug is flushed. In this scenario, the characteristic
curves diverge within a cell, as depicted in Figure 6b. A rarefaction wave is created that spreads partially
to the left and partially to the right of the cell edge. Similar to the compression wave, the solution in
each adjacent cell is on either side of the stagnation point but located such that the proppant is travelling
away from the cell edge instead of towards it. The characteristic speed is approximated using the Rankine-
Hugoniot jump condition, but the magnitude of the shock wave is equivalent to the concentration at the
stagnation point, given in Table 2. Therefore, the proppant flux transmitted at the cell edge is the flux
corresponding to the concentration at the stagnation point, qs = q(φs). The implementation is modified for
the special case of a rarefaction wave and described in further detail in Section 3.4.1.

(a) Compression wave due to characteristic
curves merging between the cell centers

(b) Rarefaction wave due to characteristic curves
diverging between the cell centers

Figure 6: Visualization of characteristic curves during formation of compression and rarefaction waves

Finally, the fourth type of shock wave encountered is due to a change in fracture width or pressure gradient
of the slurry along the fracture, as occurs due to HF propagation. Similar to the proppant concentration,
both the fracture width and pressure gradient are specified at cell centers and are discontinuous at the cell
edges, causing a jump in the characteristic speed at the cell edge. The jump in characteristic speed related
to this spatially-varying flux function results in a stationary shock wave–an abrupt change in the solution
that does not travel through the domain. The magnitude of the jump in solution is difficult to approximate,
but since the flux must be conserved at the cell edge, writing the approximation in terms of the change in
flux allows for the stationary shock wave to be accounted for. The implementation presented by Bale et. al.
[39] is used and described in further detail in Section 3.4.2.

3.4. Approximation of proppant fluxes

The difficulty in the finite volume method is in approximating the flux terms at the cell edges, qni±1/2.
The flux is dependent on terms that are known only at the cell centers. The method selected for the
approximation must take into account that the flux function is nonlinear and spatially varying, which
introduces discontinuities in the solution that travel as shock waves through the domain. In this section, a
high-resolution method is described which accounts for the shock waves described in the previous section. On
their own, the Godunov method and the Lax-Wendroff method add numerical inaccuracies to the solution
[38]. The Godunov method adds numerical diffusion (over-smoothing) and the Lax-Wendroff method adds
numerical dispersion (lag). The best features of the two methods are maintained by using a high-resolution
method that combines them using Total Variation Diminishing (TVD) slope limiters. These methods are
described in detail in the following sub-sections. Using an explicit formulation, all values are computed at
the current time, tn. For simplicity, all superscripts n are excluded in this section, but it is implied that all
values are calculated at the current time step.
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3.4.1. Godunov method

The Godunov method approximates the flux at the cell edges, qi±1/2, by solving the Riemann problem
at each of these edges using the characteristics. This method provides a first-order approximation which
naturally accounts for discontinuities propagating left and right, and characteristics merging between the cell
centers (shock waves of type 1 and 2 mentioned in the previous section). In the case of a linear flux function,
q = cφ with constant-valued c, the Godunov method is identical to the first-order upwinding method.

A rarefaction wave where proppant spreads between the cell centers as depicted in Figure 6b is not
captured naturally using the Godunov method. The Godunov method may lead to an incorrect solution
which does not satisfy the so-called entropy condition [38], a term that comes from gas dynamics but is
applicable to other nonlinear advection problems. In terms of proppant transport, the physical interpretation
of the entropy condition is that the total proppant mass must be conserved within the domain. To ensure
that the entropy condition is satisfied, the flux that is propagated in the rarefaction wave is equal to the flux
at the stagnation point, qs = q(φs). The stagnation points are given in Table 2 for various expressions of
viscosity. To correctly capture the rarefaction wave, the Godunov method with an entropy fix approximates
the flux at the cell edges as,

qGi+1/2 =







qs, si+1 > 0 and si < 0

qi, si+1/2 ≥ 0

qi+1, si+1/2 < 0

(23)

qGi−1/2 =







qs, si > 0 and si−1 < 0

qi−1, si−1/2 ≥ 0

qi, si−1/2 < 0

(24)

The formulation is based on the flux at cell centers, qi, for i = 1, 2, ..., N . If there is no rarefaction
wave, the selection of the flux is based on the direction of the characteristic speed at the cell edges, si±1/2,
computed by Equations 18-19.

The rarefaction wave is characterized by a proppant concentration on either side of the stagnation point.
The flux functions of interest in proppant transport have two stagnation points, as shown in Figure 4. One
occurs for a normalized proppant concentration, φ/φm, between 0.2 and 0.5 depending on the expression
of effective viscosity used, and the other occurs for a normalized proppant concentration φ/φm = 1. The
range of physically admissible normalized proppant concentrations is between 0 and 1, so the stagnation
point at a normalized proppant concentration of 1 is typically not encountered in simulations. However, this
formulation is able to capture both stagnation points.

3.4.2. Lax-Wendroff method

The first-order Godunov method adds numerical diffusion to the solution, particularly near shock waves
where the gradient of the concentration profile is steep. For this reason, a high-resolution method is required
to avoid over-smoothing of the solution and maintain a sharp proppant front. The Lax-Wendroff method
provides a second-order approximation and contains anti-diffusive terms in the formulation which cancel out
the numerical diffusion created in the Godunov method [38].

The Lax-Wendroff method is typically written in terms of the jump in proppant concentration at the
cell edge, ∆φ. For spatially-varying flux functions, the jumps in proppant concentration also arise because
the fracture width and pressure gradient are discontinuous at cell edges. The jump in concentration at the
cell edge is therefore not a straightforward calculation based on the values at the neighbouring nodes. Using
the fact that flux is conserved at the cell edge, Bale et. al. [39] wrote the Lax-Wendroff approximation in
terms of the change in flux, ∆q, which is equipped to handle spatially-varying fluxes and does not require
an explicit calculation of the change in concentration, ∆φ, at the cell edge. The approximation of flux at
the cell edges using the Lax-Wendroff method based on flux waves is
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qi+1/2 = ∆qi+1/2H(si+1/2 < 0) +
1

2
sign(si+1/2)

(

1− ∆t

∆x
|si+1/2|

)

∆qi+1/2

︸ ︷︷ ︸

qLW
i+1/2

(25)

qi−1/2 = −∆qi−1/2H(si−1/2 ≥ 0) +
1

2
sign(si−1/2)

(

1− ∆t

∆x
|si−1/2|

)

∆qi−1/2

︸ ︷︷ ︸

qLW
i−1/2

(26)

where the flux wave is defined as the change in flux at the cell edge, ∆qi+1/2 = qi+1 − qi, and H() is the
Heaviside step function. The first term in the approximation is equivalent to the Godunov method without
the entropy fix, and the second term can be seen as a correction term for the diffusion in the Godunov
method. The correction term, qLW

i±1/2, is used in the following section to define a high-resolution method.

3.4.3. High resolution method

The Lax-Wendroff method eliminates the numerical diffusion seen in the Godunov method but adds some
lag (numerical dispersion) to the solution. To take advantage of the properties of the Godunov method when
the solution is smooth, and the Lax-Wendroff method when there is a sharp gradient in the solution, a flux
limiter method is used. The flux approximation at the cell edges is given by

qi+1/2 = qGi+1/2 + ϕ(ri+1/2)q
LW
i+1/2

qi−1/2 = qGi−1/2 + ϕ(ri−1/2)q
LW
i−1/2

(27)

where the superscripts G and LW refer to the Godunov approximation (23-24) and the correction term
in the Lax-Wendroff approximation (25-26), respectively.

The function ϕ(r) is called the limiter function, which is responsible for applying the second-order
corrections when there is a sharp gradient in the solution. The limiter function varies between 0 for a
smooth concentration profile and 1 for a sharp jump in concentration, effectively working to add more of the
Lax-Wendroff correction near discontinuities. Various limiter functions have been developed, with the key
feature of them being that they are Total Variation Diminishing (TVD). The total variation of the solution
is the sum of the jump in concentration at all cell edges throughout the domain. Oscillations introduced by
the numerical method would increase the total variation of the solution over time. TVD limiters functions
are chosen to avoid adding oscillations by requiring that the method not increase the total variation of
the solution. A review of possible limiters can be found in Leveque [38]. This work uses the monotized
central-difference limiter (MC) limiter, defined as

ϕ(r) = max(0,min((1 + r)/2, 2, 2r)) (28)

No significant difference is observed in the numerical results presented in Section 4 when compared with
simulations using the Min-Mod, Superbee, and Van Leer limiters. The variable r in the limiter function is
the slope ratio, which relates the upwind concentration gradient to the gradient at the cell edge,
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ri+1/2 =







(φw)i − (φw)i−1

(φw)i+1 − (φw)i
, si+1/2 ≥ 0

(φw)i+2 − (φw)i+1

(φw)i+1 − (φw)i
, si+1/2 < 0

(29)

ri−1/2 =







(φw)i−1 − (φw)i−2

(φw)i − (φw)i−1

, si−1/2 ≥ 0

(φw)i+1 − (φw)i
(φw)i − (φw)i−1

, si−1/2 < 0

(30)

To define the upwind direction, the characteristic speed at the cell edge is approximated as described in
Section 3.1. The sign of the approximated characteristic speed is used to determine the upwind direction
for calculation of the slope ratio.

3.5. Boundary conditions

Flux boundary conditions are applied on both sides of the domain. At the wellbore (left edge of the
domain) is an inflow boundary, which is implemented by prescribing the injection flux on the left edge of
the first cell,

q1/2 = φinjqinj (31)

At the fracture tip (right edge of the domain) is a solid wall boundary, which is prescribed by setting
the flux on the right edge of the last cell to zero,

qN+1/2 = 0 (32)

3.6. Proppant concentration constraints

Since the approximation of fluxes is not perfect, it is possible to obtain non-physical concentration values,
outside the range φ ∈ [0, φm]. To avoid this, the predictor-corrector algorithm described below is imple-
mented to prevent proppant from flowing into cells that have already reached the maximum concentration,
φm, and to prevent proppant from leaving cells that are at the minimum proppant concentration, φ = 0. The
predictor step uses the flux approximation described in the previous sub-sections to solve for the proppant
concentration at the next time step. Then, the set of cells that have a concentration outside the allowable
range are identified and the fluxes going in/out of those cells are adjusted so that the final concentration
is exactly the limit value. Finally, the concentration at the next time step is calculated using the adjusted
fluxes.

1. Predictor step: solve for concentration at the next time step ( φn+1
i,p ) using the approximated fluxes

(qni+1/2 and qni−1/2),

φn+1
i,p = φn

i − ∆t

wn
i ∆x

(

qni+1/2 − qni−1/2

)

(33)

(a) Identify the set of cells with concentrations which are not within the allowable range (S+ and
S− are the sets of cells which have a proppant concentration above the maximum(φm)/below the
minimum (φ = 0), respectively).

(b) Correct the fluxes according to the current inflow/outflow:

• For cells in set S+, the correction flux is defined as q+correct = wn
i

∆x

∆t
(φn

i − φm).

The corrected cell edge flux approximations, qci±1/2, are defined depending on the predictor
flux approximation, as defined in Figure 7.
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Figure 7: Corrected cell edge fluxes for cells in set S+

• For cells in set S−, the correction flux is defined as q−correct = wn
i

∆x

∆t
φn
i .

The corrected cell edge flux approximations, qci±1/2, are defined depending on the predictor
flux approximation, as defined in Figure 8.

Figure 8: Corrected cell edge fluxes for cells in set S−

(c) Update the fluxes for the neighboring cells accordingly to maintain conservation property.

2. Corrector step: solve for concentration using the corrected fluxes, φn+1
i = φn

i −
∆t

wi∆x

(

qci+1/2 − qci−1/2

)

.

3. Set the approximation to the corrected fluxes, qni+1/2 = qci+1/2, and repeat if any concentrations are

still outside the acceptable range (in simulations it was found that repetitions are rarely required).

4. Numerical results

In this section, the implementation of the numerical methodology is verified for the case of a rarefaction
wave and a compression wave. Proppant transport through an elliptical fracture is studied, and the limit
injection rate is found for which a proppant plug occurs at the inlet. Finally, proppant flow through a
plane-strain KGD fracture is investigated in which proppant bridging is observed, and the use of a concen-
tration constraint is investigated. All results are compared using various expressions for effective viscosity.
Parameters that are constant for all cases are specified in Table 3.

4.1. Injection and growth of propped fractures

The first problem considered is proppant advection in a 100 m channel of constant width (2 mm) and
constant pressure gradient (-0.5 kPa/m) that is initially packed with proppant on the left half (x < 0)
with a concentration of 0.9φm. The initial conditions prescribed, shown in Figure 9a, occur in hydraulic
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Table 3: Material Properties

Parameter Variable Value Unit

Maximum proppant concentration φm 0.64
Carrier fluid viscosity µ0 1.2 mPa·s

Average proppant radius a 0.3 mm

fractures at the fracture inlet where the injected proppant builds up quickly. The proppant must spread to
the surrounding fracture which does not yet contain any proppant. This concentration profile also arises in
the case of a propped fracture with a saturated concentration at the tip. As such a fracture grows in length,
the proppant flows into the new fracture segment that is initially void of proppant.

Solution of the nonlinear advection equation with the initial proppant concentration described results
in a rarefaction wave spreading from the jump in concentration–the characteristic speed is negative to the
left of the proppant front, and positive to the right of the proppant front and therefore causes concentration
to diminish for x < 0 and increase for x > 0. Although a constant channel width and pressure gradient is
not representative of conditions in a hydraulic fracture, the problem is used for verification of the numerical
method and ensures that the rarefaction wave can be adequately captured by the entropy fix described in
Section 3.4.1. This problem resembles the so-called green-light problem in traffic flow simulations, which
models the advection of vehicles when a traffic light turns green [38]. In fact, the Krieger-Dougherty equation
for effective viscosity of the fluid with β = 1 has the same form as the linear traffic flow equation and produces
the same shape of the rarefaction curve.

The channel is discretized with 500 cells. Outflow boundary conditions are applied on both ends of the
channel, allowing the proppant to leave the domain at these boundaries. There is no injection of proppant
into the domain, simply advection of the initial proppant concentration for 500 seconds. The problem is
solved using various forms of the flux function, and the resulting concentration profiles throughout the
simulation time are shown in Figure 9. In all cases, proppant concentration is reduced to the left of the
initial discontinuity (x < 0), and increased to the right (x > 0). The shape of the rarefaction wave over
time is dependent on the characteristic speed of the flux function. The proppant characteristic speed
corresponding to the initial proppant concentration profile is shown for each viscosity expression in Figure
10. The curve of the characteristic speed matches the curve of the corresponding rarefaction wave in Figure
9. The concentration at which the proppant front smooths out is the stagnation point, provided in Table
2. For the nonlinear characteristic speed curves that are double-valued, the equal-area rule determines
the location of the shock front theoretically [38]. The theoretical curves match the resultant concentration
profiles after rarefaction, verifying the shape of the solution. For the same initial proppant concentration,
use of the Krieger-Dougherty equation with β = 1 leads to the most proppant spreading, while β = 3 leads
to the least spreading of the proppant. The other viscosity functions lead to concentration profiles that lie
between these two limits.

4.2. Plug formation and growth

The next problem considered is proppant advection in a 50 m channel of constant width (2 mm) and
constant pressure gradient (-0.5 kPa/m) that is initially packed with proppant on the right half (x > 0)
with a concentration of 0.9φm. The left half of the channel (x < 0) has a concentration of 0.3φm. The
initial concentration profile prescribed in this problem (seen in Figure 11a) leads to a compression wave
which moves towards the left of the channel, representing proppant build-up at a plug. This concentration
profile may arise for a plug forming at the fracture tip, or proppant bridging along the length of the channel
where the fracture width is not large enough for the proppant to flow through. This problem is used for
verification of the numerical method, ensuring that the compression wave can be adequately captured using
the flux approximation described in Section 2.3 and that concentration limits are not exceeded. This problem
resembles the so-called red-light problem in traffic flow simulations, which models the advection of vehicles
when a traffic light turns red [38].
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(a) t = 0s (b) t = 125s

(c) t = 250s (d) t = 375s

(e) t = 500s

Figure 9: Proppant concentration spreading at inlet for various times

18



M
ANUSCRIP

T

 

ACCEPTE
D

ACCEPTED MANUSCRIPT

(a) Krieger-Dougherty, β = 1 (b) Krieger-Dougherty, β = 2 (c) Krieger-Dougherty, β = 3

(d) Eskin and Miller (e) Eilers

Figure 10: Theoretical characteristic speed patterns for rarefaction waves

The channel is discretized using 500 cells and advection of the initial concentration profile lasts 500
seconds. The proppant concentration throughout the simulation time is shown for various expressions of
effective viscosity in Figure 11. In all the cases shown, the proppant concentration builds up to the left
of the discontinuity (x < 0). The shape of the compression wave is also dependent on the characteristic
speed, depicted for the initial concentration profile in Figure 12. The resulting concentration profiles match
the theoretical curves obtained from the characteristic speed patterns, after applying the equal-area rule
for multi-valued solutions [38]. Similar to the first test case in Section 4.1, use of the Krieger-Dougherty
equation with β = 1 leads to the fastest-moving shock wave and β = 3 is the slowest-moving shock wave.

4.3. Inject into an elliptical fracture with constant pressure gradient

The proppant flux is a function of the proppant concentration, fracture width, and fluid pressure gradi-
ent. The verification cases performed in the previous sections had a constant fracture width and pressure
gradient, with nonlinearity coming only from the proppant concentration. The next problem studies prop-
pant advection through a 100 m long elliptical channel with a maximum fracture width of 3 mm. A constant
pressure gradient of -0.5 kPa/m is maintained throughout the fracture length. Although a constant pressure
gradient is not representative of conditions in a hydraulic fracture, this condition is useful for studying the
shocks in the solution that originate due to nonlinearity in the fracture width.

The channel is discretized using 500 cells. The proppant width is calculated at the center of each finite
volume cell and adds another spatially-varying term in the flux function. A solid wall boundary condition
(32) is applied to the fracture tip on the right-hand side of the domain. Proppant is injected at a constant
volumetric concentration of 0.1 for 800 seconds, with an inlet flux given in Table 4 for each viscosity
expression studied.

A blocking function is included in the flux formula, which prevents proppant from flowing into a cell
with a fracture width less than 3 proppant diameters in size, as defined in Equation 12. Figure 13 shows the
proppant concentration profiles for various times using five different expressions for effective viscosity. The
injected proppant travels towards the tip of the fracture as a rarefaction wave, with the narrowing fracture
width creating a small build-up of proppant ahead of the concentration jump (see Figure 13b). Once the
proppant front reaches 80m, the small fracture width causes bridging and prevents proppant from flowing
to the tip, as seen in Figure 13c. The proppant builds up to the saturation concentration and another
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(a) t = 0s (b) t = 125s

(c) t = 250s (d) t = 375s

(e) t = 500s

Figure 11: Proppant concentration backing up at a plug for various times
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(a) Krieger-Dougherty, β = 1 (b) Krieger-Dougherty, β = 2 (c) Krieger-Dougherty, β = 3

(d) Eskin and Miller (e) Eilers

Figure 12: Theoretical characteristic speed patterns for compression waves

Table 4: Injection rate used to maintain injection concentration of φinj = 0.1 for various expressions of effective viscosity

Viscosity Expression φinj(t)qinj(t) = 0.1
−w3

12µ(0.1)

∂p

∂x

Eskin and Miller 68.730 mm2/s
Eilers 71.117 mm2/s

Krieger-Dougherty, β = 1 79.101 mm2/s
Krieger-Dougherty, β = 2 66.742 mm2/s
Krieger-Dougherty, β = 3 56.313 mm2/s
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shock wave emerges forcing the proppant to build up towards the inlet. In Figure 13d two shock fronts
are visible–one moving towards the right from the initial injection spreading and one moving towards the
left as the proppant plug grows from the screen-out point. Dontsov and Peirce [13] propose a modified
blocking function which provides a smoother transition for the on/off status of the function. No difference
was found in the solution when tested with the modified version, which shows that Dontsov’s modification
approximates the condition very well. The approximation using the Krieger-Dougherty equation with β = 1
creates the fastest proppant transport towards the tip and subsequent build-up, while the slowest advection
occurs using β = 3.

A study of the injection rates is performed using the Krieger-Dougherty effective viscosity expression
with β = 3. It is found that there is a maximum injection flux permitted before a build-up of proppant
occurs at the inlet. For the material and fracture properties used in this study, the maximum injection
flux is 63.281 mm2/s, which corresponds to the flux at the stagnation point, qs. Figure 14a shows the
concentration profile after 800 seconds of injection at the maximum injection flux. The concentration at the
inlet is 0.25φm, which corresponds to the concentration at which the maximum proppant flux occurs (see
Figure 2), and is equivalent to the stagnation point shown (i.e., φs = 0.25φm). The stagnation point, φs,
thus defines the maximum injection rate. Any flux smaller than the maximum leads to a lower concentration
at the inlet, but ultimately the same concentration profile at the plug, as shown in Figure 14b. An injection
flux exceeding the maximum injection flux will result in a build-up of proppant at the inlet, as shown in
Figure 14c. However, the proppant still enters the fracture and the concentration profile at the plug is the
same as the other cases.

The maximum injection flux is dependent on the expression for effective viscosity and is lower than
injection rates reported in the literature [1]. In reality, as the injection rate increases the increased pressure
at the inlet will also cause a change in the fracture width that prevents plugging at the tip. A coupled
solution with the solid deformation of the rock is required to capture all the physics, but the interesting
point learned from this study is that the build-up of proppant causing a plug at the inlet can be determined
by the flux function using the appropriate effective viscosity function.

4.4. Injection into KGD fracture

Proppant advection through a hydraulic fracture is simulated by discretizing the fracture into 500 finite
volume cells. The approximate solution for a finite, plane-strain fracture (KGD) derived by Dontsov [40]
was used to obtain the fracture width and pressure along the fracture length after injecting pad fluid for
30 min at a rate of 0.01 m3/s into a 10 m high fracture. The solution is obtained for a rock mass with
Young’s modulus of 40 GPa, Poisson’s ratio of 0.25, fracture toughness of 1 MPa

√
m, and Carter leak-off

coefficient of 0.001 m/min. The fracture propagates to 213.1 metres in 30 min, with a width and pressure
gradient profile as shown in Figure 15. The pressure gradient is calculated using a forward difference from
the pressure profile. Due to the blocking function, proppant only flows through the portion of the fracture
that has a width less than 3 proppant diameters in size and the proppant does not reach the fracture tip.
The pressure gradient throughout the majority of the fracture length is approximately -500 Pa/m, with
a much higher pressure gradient at the inlet of 25 kPa/m, and at the fracture tip. An accurate pressure
profile for a hydraulic fracture can only be obtained through a fully coupled model since the proppant
concentration will change the effective viscosity of the fluid and increase the fluid pressure. This problem
is used to demonstrate the types of shocks that occur in the proppant transport solution due to the large
changes in pressure gradient at the fracture inlet.

Maintaining a constant width and pressure profile, proppant slurry is injected into the fracture for 30
min at a rate of 40 mm2/s. The concentration profiles for various times throughout the injection are shown
in Figure 16 for several effective viscosity expressions. The advection is affected by both the nonlinear
fracture width and the nonlinear pressure gradient along the length of the fracture. The steep change in
pressure gradient at the inlet causes the proppant to build-up around 50 m into the fracture as it spreads
towards the fracture tip. Proppant bridging occurs approximately 150 m into the fracture at which point
the concentration reaches the saturation point and builds up towards the inlet. The Krieger-Dougherty
viscosity function with β = 1 results in the fastest proppant transport towards the fracture tip and also the
fastest build-up at the tip. In contrast, the function with β = 3 produces the most build-up of proppant
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(a) t = 0s (b) t = 200s

(c) t = 400s (d) t = 600s

(e) t = 800s

Figure 13: Proppant injection into an elliptical fracture with constant pressure gradient, for various times
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(a) Maximum injection flux = 63.3 mm2/s

(b) Injection flux less than maximum

(c) Injection flux greater than maximum

Figure 14: Proppant injection into an elliptical fracture with constant pressure gradient, at t = 800s, for various injection rates24



M
ANUSCRIP

T

 

ACCEPTE
D

ACCEPTED MANUSCRIPT

(a) Width profile for KGD fracture [40] (b) Pressure gradient profile for KGD frac-
ture [40]

Figure 15: Width and pressure along the fracture length

near the inlet and slowest build-up at the plug. These two viscosity functions represent the limits for all
problems studied in this paper.

Implementation of the concentration constraint described in Section 3.6 makes the solution stable and
remain within the physical bounds. It is most common to see the concentration exceed the maximum either
near the boundary or at a tip-screen out location. In unrefined meshes, oscillations due to a poor approxi-
mation may cause the concentration to exceed the maximum as well. In these situations, the concentration
constraint prevents the problem from becoming unbounded. The concentration profiles obtained without
imposing the constraint are shown in Figure 17 (dashed lines). In some cases, the solution oscillates above
the limit, as in Figure 17a. In other cases, the solution becomes unbounded and the last cell increases in
concentration without allowing a build-up of proppant in neighbouring cells, such as in Figures 17b and 17e.
These non-physical concentrations are avoided by imposing concentration constraints.

5. Conclusion

The numerical methodology for solving the nonlinear hyperbolic partial differential equation that de-
scribes proppant transport through a hydraulic fracture is presented in this paper. Many of the HF models
to date solve the coupled equations governing rock deformation and fluid flow, and then loosely couple the
linearized proppant transport equation at the end of each time step. The advection equation is typically
linearized by assuming a constant fluid velocity. The work presented focuses solely on the solution of the
proppant transport equation, without assuming a linear form for the proppant flux function. Instead, a non-
linear advection problem is solved in which a constant pressure gradient is assumed rather than a constant
flow velocity.

The finite volume method using the Godunov approximation with an entropy fix and a high-resolution
correction using slope limiters is used. This methodology is capable of capturing the shock waves in the
solution which arise from the spatially-varying fracture width and fluid pressure gradient along the fracture
(especially at the fracture tips and inlet), as well as the rarefaction wave that emerges when a proppant build-
up disperses into a fracture. A predictor-corrector algorithm is proposed for constraining the concentration
within physically allowable limits. Additionally, proppant bridging is simulated by limiting the proppant
flux for fracture widths less than a threshold size. A critical time step is derived for proppant transport
problems which works for any effective viscosity function used to describe the slurry.
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(a) t = 0s (b) t = 450s

(c) t = 900s (d) t = 1350s

(e) t = 1800s

Figure 16: Proppant injection into a KGD fracture, for various times
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(a) Krieger-Dougherty, β = 1 (b) Krieger-Dougherty, β = 2

(c) Krieger-Dougherty, β = 3 (d) Eskin and Miller

(e) Eilers

Figure 17: Proppant concentration at 1800s using various effective viscosity formulas with (solid line) and without (dashed
line) concentration constraints
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The numerical method is verified by evaluating the rarefaction wave that occurs as proppant is injected
at high concentrations into a fracture and the compression wave that occurs as when a proppant plug is
formed at a small fracture width. Proppant advection through an elliptical fracture is investigated, in which
proppant bridging is observed at the location where the fracture width is too narrow for proppant to pass.
The maximum injection rate permissible before a proppant plug forms at the inlet is calculated using the
approximation for the proppant characteristic speed. Finally, proppant transport through a plane-strain
KGD fracture is investigated which shows that the steep change in pressure gradient at the fracture inlet
causes a build-up of proppant near the inlet, and a narrow fracture width may cause a plug along the fracture
before proppant reaches the tip. Solutions are compared using various functions for effective slurry viscosity
and it is observed that the Krieger-Dougherty expression with β = 1 results in the fastest moving proppant,
while β = 3 results in the slowest moving proppant. The other viscosity functions produce results that lie
between those extremes.

The results obtained in this work further the understanding of the nonlinear advection of proppant
through a fracture. It is of particular importance in grasping the limitations of mixture models where linear
proppant advection is performed as a separate step after coupling the rock deformation and slurry flow.
More rigorous simulation of the proppant transport mechanisms requires coupling to the slurry flow and
rock deformation processes and increasing model dimensions to include the effects of settling. The model
presented provides a numerical foundation for simulating the complexities of nonlinear proppant transport.
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List of Symbols

∆q Jump in the proppant volumetric flux

∆t Length of a time step

∆x Length of evenly-spaced finite volume cells

∆φ Jump in proppant concentration

µ(φ) Effective slurry viscosity

µ0 Viscosity of the carrier fluid

φ(x, t) Average volumetric concentration of proppant particles across the fracture width

φ0(x) Initial proppant concentration at the start of the simulation

φn
i Proppant concentration at center of cell i at time tn

φm Saturated proppant concentration

φs Stagnation point–concentration at which the characteristic speed changes sign

φn+1
i,p Predicted concentration at cell i

ρ Slurry density

ρf Fluid density

ρp Proppant density

εs Small value used to determine whether the jump in φw is approaching zero

ϕ(r) Limiter function
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a Average proppant radius

H Heaviside step function

N Number of evenly-spaced finite volume cells

p Fluid pressure

pni Fluid pressure at center of cell i at time tn

Q Slurry mass flux per unit height of fracture

q Proppant volumetric flux per unit height of fracture

Qf Fluid mass flux per unit height of fracture

Qp Proppant mass flux per unit height of fracture

qs Proppant volumetric flux corresponding to the stagnation point

q+correct Correction for the approximation of the flux concentration for cells which have a concentration over
the maximum

q−correct Correction for the approximation of the flux concentration for cells which have a concentration
below the minimum

qci±1/2 Corrected proppant flux approximations at the edge of cell i

qGi±1/2 Approximation of the proppant volumetric flux at the edges of cell i using the Godunov method

qni±1/2 Volumetric flux entering/leaving cell i at the cell edges

qLW
i±1/2 Correction term in the approximation of the proppant volumetric flux using the Lax-Wendroff

method

Qinj Mass flux of slurry per unit area of fracture injected at the wellbore

qinj Volumetric flux of proppant per unit area of fracture injected at the wellbore

Qsink Mass flux of slurry per unit area of fracture leaking off into the formation

ri±1/2 Slope ratio–ratio of upwind concentration gradient to the gradient at the cell edge

s Proppant characteristic speed

S+ Set of cells with a proppant concentration above the maximum (φm)

S− Set of cells with a proppant concentration below the minimum (φ = 0)

sni±1/2 Proppant characteristic speed at the edges of cell i at time tn

snmax Maximum proppant characteristic speed in the domain at time tn

t Time

tn Time at beginning of time step n

tn+1 Time at the end of time step n

v Slurry velocity
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vslip Slip velocity–difference in velocity of the proppant and the slurry

vp Proppant velocity

w(x) Fracture width

wn
i Fracture width at center of cell i at time tn

x Distance along the length of the fracture

x0 Location of fracture inlet

xi±1/2 Location of the edges of cell i

xtip Location of fracture tip

y Distance along the fracture width
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Numerical Considerations for the Simulation of Proppant Transport 
Through Fractures 

Highlights 

 

• The nonlinear hyperbolic equation that describes proppant transport is solved 

• Proppant movement depends on the assumed form of the effective viscosity 
function 

• The maximum injection rate before a proppant plug form is calculated 

• The Krieger-Dougherty equation using β=1 results in the fastest moving proppant 

• The Krieger-Dougherty equation using β=3 results in the slowest moving proppant 


