29 research outputs found

    Temporal Variation of Aerosol Properties at a Rural Continental Site and Study of Aerosol Evolution through Growth Law Analysis

    Get PDF
    Aerosol size distributions were measured by a Scanning Mobility Particle Sizer (SMPS) onboard the CIRPAS Twin Otter aircraft during 16 flights at the Southern Great Plains (SGP) site in northern central Oklahoma as part of the Aerosol Intensive Operation period in May, 2003. During the same period a second SMPS was deployed at a surface station and provided continuous measurements. Combined with trace gas measurements at the SGP site and back-trajectory analysis, the aerosol size distributions provided insights into the sources of aerosols observed at the SGP site. High particle concentrations, observed mostly during daytime, were well correlated with the sulfur dioxide (SO2) mixing ratios, suggesting nucleation involving sulfuric acid is likely the main source of newly formed particles at the SGP. Aerosols within plumes originating from wildfires in Central America were measured at the surface site. Vertically compact aerosol layers, which can be traced back to forest fires in East Asia, were intercepted at altitudes over 3000 meters. Analyses of size dependent particle growth rates for four periods during which high cloud coverage was observed indicate growth dominated by volume controlled reactions. Sulfate accounts for 50% to 72% of the increase in aerosol volume concentration; the rest of the volume concentration increase was likely due to secondary organic species. The growth law analyses and meteorological conditions indicate that the sulfate was produced mainly through aqueous oxidation of SO2 in clouds droplets and hydrated aerosol particles

    Evaluation of Daytime Measurements of Aerosols and Water Vapor made by an Operational Raman Lidar over the Southern Great Plains

    Get PDF
    Raman lidar water vapor and aerosol extinction profiles acquired during the daytime over the Department of Energy (DOE) Atmospheric Radiation Measurement (ARM) Southern Great Plains (SGP) site in northern Oklahoma (36.606 N, 97.50 W, 315 m) are evaluated using profiles measured by in situ and remote sensing instruments deployed during the May 2003 Aerosol Intensive Operations Period (IOP). The automated algorithms used to derive these profiles from the Raman lidar data were first modified to reduce the adverse effects associated with a general loss of sensitivity of the Raman lidar since early 2002. The Raman lidar water vapor measurements, which are calibrated to match precipitable water vapor (PWV) derived from coincident microwave radiometer (MWR) measurements were, on average, 5-10% (0.3-0.6 g/m(exp 3) higher than the other measurements. Some of this difference is due to out-of-date line parameters that were subsequently updated in the MWR PWV retrievals. The Raman lidar aerosol extinction measurements were, on average, about 0.03 km(exp -1) higher than aerosol measurements derived from airborne Sun photometer measurements of aerosol optical thickness and in situ measurements of aerosol scattering and absorption. This bias, which was about 50% of the mean aerosol extinction measured during this IOP, decreased to about 10% when aerosol extinction comparisons were restricted to aerosol extinction values larger than 0.15 km(exp -1). The lidar measurements of the aerosol extinction/backscatter ratio and airborne Sun photometer measurements of the aerosol optical thickness were used along with in situ measurements of the aerosol size distribution to retrieve estimates of the aerosol single scattering albedo (omega(sub o)) and the effective complex refractive index. Retrieved values of omega(sub o) ranged from (0.91-0.98) and were in generally good agreement with omega(sub o) derived from airborne in situ measurements of scattering and absorption. Elevated aerosol layers located between about 2.6 and 3.6 km were observed by the Raman lidar on May 25 and May 27. The airborne measurements and lidar retrievals indicated that these layers, which were likely smoke produced by Siberian forest fires, were primarily composed of relatively large particles (r(sub eff) approximately 0.23 micrometers), and that the layers were relatively nonabsorbing (omega(sub o) approximately 0.96-0.98). Preliminary results show that major modifications that were made to the Raman lidar system during 2004 have dramatically improved the sensitivity in the aerosol and water vapor channels and reduced random errors in the aerosol scattering ratio and water vapor retrievals by an order of magnitude

    Effect of Neuraminidase Inhibitor–Resistant Mutations on Pathogenicity of Clade 2.2 A/Turkey/15/06 (H5N1) Influenza Virus in Ferrets

    Get PDF
    The acquisition of neuraminidase (NA) inhibitor resistance by H5N1 influenza viruses has serious clinical implications, as this class of drugs can be an essential component of pandemic control measures. The continuous evolution of the highly pathogenic H5N1 influenza viruses results in the emergence of natural NA gene variations whose impact on viral fitness and NA inhibitor susceptibility are poorly defined. We generated seven genetically stable recombinant clade 2.2 A/Turkey/15/06-like (H5N1) influenza viruses carrying NA mutations located either in the framework residues (E119A, H274Y, N294S) or in close proximity to the NA enzyme active site (V116A, I117V, K150N, Y252H). NA enzyme inhibition assays showed that NA mutations at positions 116, 117, 274, and 294 reduced susceptibility to oseltamivir carboxylate (IC50s increased 5- to 940-fold). Importantly, the E119A NA mutation (previously reported to confer resistance in the N2 NA subtype) was stable in the clade 2.2 H5N1 virus background and induced cross-resistance to oseltamivir carboxylate and zanamivir. We demonstrated that Y252H NA mutation contributed for decreased susceptibility of clade 2.2 H5N1 viruses to oseltamivir carboxylate as compared to clade 1 viruses. The enzyme kinetic parameters (Vmax, Km and Ki) of the avian-like N1 NA glycoproteins were highly consistent with their IC50 values. None of the recombinant H5N1 viruses had attenuated virulence in ferrets inoculated with 106 EID50 dose. Most infected ferrets showed mild clinical disease signs that differed in duration. However, H5N1 viruses carrying the E119A or the N294S NA mutation were lethal to 1 of 3 inoculated animals and were associated with significantly higher virus titers (P<0.01) and inflammation in the lungs compared to the wild-type virus. Our results suggest that highly pathogenic H5N1 variants carrying mutations within the NA active site that decrease susceptibility to NA inhibitors may possess increased virulence in mammalian hosts compared to drug-sensitive viruses. There is a need for novel anti-influenza drugs that target different virus/host factors and can limit the emergence of resistance

    Aerosol size distribution modeling for the Pacific Northwest

    No full text
    Thesis (Ph. D.)--University of Washington, 2007.The goal of this project is to more accurately model the aerosol size distribution with the Community Multiscale Air Quality modeling system (CMAQ). The approach is to compare its performance to observations in the Pacific Northwest and to make improvements to the model science.The official CMAQ v4.4 underpredicts the total particle number concentration by 1-2 orders of magnitude. The bias is consistent throughout the day and across the urban-influenced region. It becomes progressively worse for smaller sizes and is not associated with any particular chemical species, emissions source, or air mass aging. Errors in total aerosol loading, meteorology, and gaseous aerosol precursors do not show a pattern consistent with the number underprediction. Of all the aerosol processes that create and destroy particles in the urban environment, the nucleation of new particles and the emission size distributions in the official CMAQ v4.4 attract attention for their scientific deficiencies and their tendency to produce the observed errors.The latest mechanisms for ternary NH3-H2SO 4-H2O nucleation and nucleation mode scavenging and growth are added to CMAQ, and the emission size distribution is updated to reflect modern mesoscale measurements. Modeled particle concentrations increase substantially, but they are still underpredicted by up to an order of magnitude. Nucleation changes are responsible for most of the increase but are also responsible for spatially inconsistent performance. Emissions updates increase the number of particles smoothly across urban-influenced areas by a factor of 2-4. The modeled size distributions, especially in the ultrafine range, are a better match to observations, although errors in the accumulation mode remain. The fact that these changes make a noticeable improvement in results adds weight to the premise that regional nucleation occurs regularly during the Puget Sound summer and that emissions of Aitken mode particles are an important component to the ambient aerosol size distribution. Although the updates to CMAQ represent only our incomplete understanding of aerosol pollution, they are able to reduce the underprediction of aerosol number concentrations and produce size distributions with the appropriate major features

    Observation of ambient aerosol particle growth due to in-cloud processes within boundary layers

    Get PDF
    Journal of Geophysical Research, Vol. 112, D14207The article of record as published may be located at http://dx.doi.org/10.1029/2006JD007989.Aerosol microphysical and optical properties were measured on board the CIRPAS Twin Otter aircraft during 16 flights at the Southern Great Plain (SGP) site in northern central Oklahoma as part of the Aerosol Intensive Operation period in May 2003. Within well-mixed boundary layers on four cloudy days, vertical profiles measured on board the Twin Otter show that dry aerosol size, volume concentration, and scattering coefficients all increased with increasing altitude, whereas the total number concentration remained essentially constant. A one-dimensional model, which uses simultaneous meteorological measurements as inputs, shows that the observed increase in aerosol volume concentration with increasing altitude is consistent with in-cloud sulfate production at the top of the boundary layer. The sulfate production rate was sufficiently fast to overcome the homogenization resulting from turbulent mixing. In contrast, on cloud-free days, measurements on a second aircraft show nearly uniform aerosol volume concentrations within well-mixed boundary layers. The observed vertical gradients in aerosol volume concentration suggest that even within well-mixed boundary layers, surface measurements may not be representative of aerosols properties (e.g., loading and scattering coefficients, etc.) at elevated altitudes, especially when SO2 concentration and cloud coverage are high

    Photoacoustic insight for aerosol light absorption aloft from meteorological aircraft and comparison with particle soot absorption photometer measurements: DOE Southern Great Plains climate research facility and the coastal stratocumulus imposed perturbation experiments

    Get PDF
    Journal of Geophysical Research, Vol. 111, No. D5, D05S02The article of record as published may be located at http://dx.doi.org/10.1029/2005JD005964.Aerosol light absorption can be intense close to local sources such as wildland and oil fires, with smoke that disperses into the boundary layer and, with enough lift, into the upper atmosphere where it may be transported around the globe. Filter-based methods such as the Particle Soot Absorption Photometer (PSAP) are most commonly used to quantify aerosol light absorption aloft. This paper reports first measurements of aerosol light absorption aloft with photoacoustic instrumentation (PA). Three examples of aerosol light absorption are presented. The first one illustrates a case of detached layers aloft arising from intercontinental, interoceanic transport of smoke from wildland fires in Siberia to the North American continent and the measurement campaign held at the Department of Energy Atmospheric Radiation Measurement Program Climate Research Facility in north central Oklahoma. Then, two examples of intense local fire smoke light absorption from the Coastal Stratocumulus Imposed Perturbation Experiment near Marina, California, USA, are presented. The first local fire was an oil fire burning in a storage tank near Moss Landing, California, USA, and smoke from this fire was very dark, indicating a low single scattering albedo. By contrast, the second local fire was predominantly burning wood, vegetation, and structures near Fort Ord in Marina, California, USA, and the smoke was very bright, indicating a high single scattering albedo. In all examples, PA measurements at 676 nm were compared with those from a PSAP modified to measure at three wavelengths, including 660 nm

    Magnetic Resonance Studies of Lunar Samples

    No full text
    Electron spin resonance searches at 9.5 gigahertz on several fines samples and portions of several rocks have yielded signals whose lineshapes and temperature dependences show that the samples are principally ferromagnetic in nature. Proton magnetic resonance searches at 60 megahertz of these samples have not revealed any signals ascribable to water or any other types of hydrogen in concentrations greater than 0.0001 percent by weight contained in narrow lines (5 oersteds wide or less) and 0.01 percent by weight in wide lines (as wide as 100 oersteds)

    Fission-fragment-induced stresses in ceramic materials /

    No full text
    "June 4, 1963."Includes bibliographical references (p. 21-22)Work performed by the Battelle Memorial InstituteMode of access: Internet
    corecore