44 research outputs found

    Estimating dose—response relationships for vitamin D with coronary heart disease, stroke, and all-cause mortality: observational and revised Mendelian randomization analyses

    Get PDF
    Background Randomised trials of vitamin D supplementation for cardiovascular disease and all-cause mortality have generally reported null findings. However, generalisability of results to individuals with low vitamin D status is unclear. We aimed to characterise dose-response relationships between 25-hydroxyvitamin D (25[OH]D) concentrations and risk of coronary heart disease, stroke, and all-cause mortality in observational and Mendelian randomisation frameworks. Methods Observational analyses were undertaken using data from 33 prospective studies comprising 500 962 individuals with no known history of coronary heart disease or stroke at baseline. Mendelian randomisation analyses were performed in four population-based cohort studies (UK Biobank, EPIC-CVD, and two Copenhagen population-based studies) comprising 386 406 middle-aged individuals of European ancestries, including 33 546 people who developed coronary heart disease, 18 166 people who had a stroke, and 27 885 people who died. Primary outcomes were coronary heart disease, defined as fatal ischaemic heart disease (International Classification of Diseases 10th revision code I20-I25) or non-fatal myocardial infarction (I21-I23); stroke, defined as any cerebrovascular disease (I60-I69); and all-cause mortality. Findings Observational analyses suggested inverse associations between incident coronary heart disease, stroke, and all-cause mortality outcomes with 25(OH)D concentration at low 25(OH)D concentrations. In population-wide genetic analyses, there were no associations of genetically predicted 25(OH)D with coronary heart disease (odds ratio [OR] per 10 nmol/L higher genetically-predicted 25(OH)D concentration 0·98, 95% CI 0·95–1·01), stroke (1·01, [0·97–1·05]), or all-cause mortality (0·99, 0·95–1·02). Null findings were also observed in genetic analyses for cause-specific mortality outcomes, and in stratified genetic analyses for all outcomes at all observed levels of 25(OH)D concentrations. Interpretation Stratified Mendelian randomisation analyses suggest a lack of causal relationship for 25(OH)D concentrations with both cardiovascular and mortality outcomes for individuals at all levels of 25(OH)D. Our findings suggest that substantial reductions in mortality and cardiovascular morbidity due to long-term low-dose vitamin D supplementation are unlikely even if targeted at individuals with low vitamin D status

    Optimal chemotherapy for leukemia: a model-based strategy for individualized treatment.

    No full text
    Acute Lymphoblastic Leukemia, commonly known as ALL, is a predominant form of cancer during childhood. With the advent of modern healthcare support, the 5-year survival rate has been impressive in the recent past. However, long-term ALL survivors embattle several treatment-related medical and socio-economic complications due to excessive and inordinate chemotherapy doses received during treatment. In this work, we present a model-based approach to personalize 6-Mercaptopurine (6-MP) treatment for childhood ALL with a provision for incorporating the pharmacogenomic variations among patients. Semi-mechanistic mathematical models were developed and validated for i) 6-MP metabolism, ii) red blood cell mean corpuscular volume (MCV) dynamics, a surrogate marker for treatment efficacy, and iii) leukopenia, a major side-effect. With the constraint of getting limited data from clinics, a global sensitivity analysis based model reduction technique was employed to reduce the parameter space arising from semi-mechanistic models. The reduced, sensitive parameters were used to individualize the average patient model to a specific patient so as to minimize the model uncertainty. Models fit the data well and mimic diverse behavior observed among patients with minimum parameters. The model was validated with real patient data obtained from literature and Riley Hospital for Children in Indianapolis. Patient models were used to optimize the dose for an individual patient through nonlinear model predictive control. The implementation of our approach in clinical practice is realizable with routinely measured complete blood counts (CBC) and a few additional metabolite measurements. The proposed approach promises to achieve model-based individualized treatment to a specific patient, as opposed to a standard-dose-for-all, and to prescribe an optimal dose for a desired outcome with minimum side-effects

    Relationship of Skin Reflectance and Serum Bilirubin: Full Term Caucasian Infants

    No full text
    Very little data concerning skin reflectance of the newborn has been published. The presence of cutaneous jaundice supports the qualitative relationship between skin color and serum bilirubin level. The present study was designed to obtain basic information concerning the reflectance of the newborn skin and its relationship to serum bilirubin level. Measurements of blanched skin were taken on the back of 30 White full-term infants. First order linear, multiple linear, and polynomial non­linear regressions were performed on the spectral reflectance values over the range 400 to 750 nm at each of the wavelength band intervals (5 nm) with respect to serum bilirubin level. The best analysis results (R = 0.965) were obtained from a polynomial, non-linear regression of the double logarithm of the reflectance spectra for 5 wavelengths with respect to serum bilirubin concentration. This study shows that there is a strong relationship between spectral reflectance of the White full-term newborn skin and the serum bilirubin concentration

    Adding exercise to rosuvastatin treatment: Influence on C-reactive protein, monocyte toll-like receptor 4 expression, and inflammatory monocyte (CD14+CD16+) population

    No full text
    Statin treatment and exercise training can reduce markers of inflammation when administered separately. The purpose of this study was to determine the effect of rosuvastatin treatment and the addition of exercise training on circulating markers of inflammation including C-reactive protein (CRP), monocyte toll-like receptor 4 (TLR4) expression, and CD14+CD16+ monocyte population size. Thirty-three hypercholesterolemic and physically inactive subjects were randomly assigned to rosuvastatin (R) or rosuvastatin/exercise (RE) groups. A third group of physically active hypercholesterolemic subjects served as a control (AC). The R and RE groups received rosuvastatin treatment (10 mg/d) for 20 weeks. From week 10 to week 20, the RE group also participated in an exercise training program (3d/wk). Measurements were made at baseline (Pre), week 10 (Mid), and week 20 (Post), and included TLR4 expression on CD14+ monocytes and CD14+CD16+ monocyte population size as determined by 3-color flow cytometry. Serum CRP was quantified by enzyme-linked immunosorbent assay. TLR4 expression on CD14+ monocytes was higher in the R group at week 20. When treatment groups (R and RE) were combined, serum CRP was lower across time. Furthermore, serum CRP and inflammatory monocyte population size were lower in the RE group compared with the R group at the Post time point. When all groups (R, RE, and AC) were combined, TLR4 expression was greater on inflammatory monocytes (CD14+CD16+) compared with classic monocytes (CD14+CD16-) at all time points. In conclusion, rosuvastatin may influence monocyte inflammatory response by increasing TLR4 expression on circulating monocytes. The addition of exercise training to rosuvastatin treatment further lowered CRP and reduced the size of the inflammatory monocyte population, suggesting an additive anti-inflammatory effect of exercise. © 2010 Elsevier Inc. All rights reserved

    Adding exercise training to rosuvastatin treatment: influence on serum lipids and biomarkers of muscle and liver damage

    No full text
    Statin treatment and exercise training can improve lipid profile when administered separately. The efficacy of exercise and statin treatment combined, and its impact on myalgia and serum creatine kinase (CK) have not been completely addressed. The purpose of this study was to determine the effect of statin treatment and the addition of exercise training on lipid profile, including oxidized low-density lipoprotein (oxLDL), and levels of CK and alanine transaminase. Thirty-one hypercholesterolemic and physically inactive subjects were randomly assigned to rosuvastatin (R) or rosuvastatin/exercise (RE) group. A third group of physically active hypercholesterolemic subjects served as an active control group (AC). The R and RE groups received rosuvastatin treatment (10 mg/d) for 20 weeks. From week 10 to week 20, the RE group also participated in a combined endurance and resistive exercise training program (3 d/wk). Lipid profile was determined for all subjects at week 0 (Pre), week 10 (Mid), and week 20 (Post). The CK and alanine transaminase levels were measured at the same time points in the RE and R groups and 48 hours after the first and fifth exercise bout in the RE group. Each RE subject was formally queried about muscle fatigue, soreness, and stiffness before each training session. Total, LDL, and oxLDL cholesterol was lower in the RE and R groups at Mid and Post time points when compared with Pre. Oxidized LDL was lower in the RE group compared with the R group at the Post time point. When treatment groups (R and RE) were combined, high-density lipoprotein levels were increased and triglycerides decreased across time. Creatine kinase increased in the RE group 48 hours after the first exercise bout, but returned to baseline levels 48 hours after the fifth exercise bout. Rosuvastatin treatment decreased total, LDL, and oxLDL cholesterol. The addition of an exercise training program resulted in a further decrease in oxLDL. There was no abnormal sustained increase in CK or reports of myalgia after the addition of exercise training to rosuvastatin treatment. © 2009 Elsevier Inc. All rights reserved

    Leukopoiesis model fit to individual patient data obtained from literature.

    No full text
    <p>Solid dots indicate the individual patient WBC count and solid lines represent the model fit. The estimated patient-specific parameters are provided in <a href="http://www.plosone.org/article/info:doi/10.1371/journal.pone.0109623#pone-0109623-t005" target="_blank">Table 5</a>. The model mimics diverse behavior observed during 6-MP treatment.</p

    Virtual patient simulation for leukocyte and MCV model.

    No full text
    <p>Data for 6-MP model and leukocyte model are assumed to have originated from the same patient. The resultant estimated parameters for three representative patients are used to simulate the virtual patient response. It is apparent from the figure that different patients achieved different levels of response for the same dose, thereby achieving different treatment outcome. A. Leukocyte model, B. MCV model.</p

    Optimal dosing based on leukocyte count and MCV as target.

    No full text
    <p>A. Evolution of leukocyte count in response to optimum 6-MP dosing. B. Evolution of ΔMCV response with optimum 6-MP dose. Dashed lines represent critical leukocyte and target MCV levels and solid dots represent clinical data for an average patient. C. Optimum 6-MP dosing profile predicted by NMPC. The standard daily 6-MP dosing is 75 mg/day.</p

    Simplified schematics of the leukopoiesis and erythropoiesis model.

    No full text
    <p>Stem cells reside in the bone marrow, proliferate, mature and enter the circulation as fully functional leukocytes. Stem cells receive biochemical feedback for proliferation from the circulating blood. On treatment initiation, 6-MP enters the bone marrow and imparts cytotoxicity to the stem cells. Leukocytes and RBC MCV in the circulating blood are routinely measured and used as a dose-limiting parameter. A. Leukopoiesis, B. Erythropoiesis. Additional compartment for MCV was added to account for the dynamic changes following 6-MP treatment. Solid arrows represent cellular movement; dashed arrow represents property changes.</p
    corecore