156 research outputs found

    An approach to executive training

    Full text link
    Thesis (M.B.A.)--Boston Universit

    CKS Proteins Promote Checkpoint Recovery by Stimulating Phosphorylation of Treslin

    Get PDF
    CKS proteins are small (9-kDa) polypeptides that bind to a subset of the cyclin-dependent kinases. The two paralogs expressed in mammals, Cks1 and Cks2, share an overlapping function that is essential for early development. However, both proteins are frequently overexpressed in human malignancy. It has been shown that CKS protein overexpression overrides the replication stress checkpoint, promoting continued origin firing. This finding has led to the proposal that CKS protein-dependent checkpoint override allows premalignant cells to evade oncogene stress barriers, providing a causal link to oncogenesis. Here, we provide mechanistic insight into how overexpression of CKS proteins promotes override of the replication stress checkpoint. We show that CKS proteins greatly enhance the ability of Cdk2 to phosphorylate the key replication initiation protein treslin in vitro. Furthermore, stimulation of treslin phosphorylation does not occur by the canonical adapter mechanism demonstrated for other substrates, as cyclin-dependent kinase (CDK) binding-defective mutants are capable of stimulating treslin phosphorylation. This effect is recapitulated in vivo, where silencing of Cks1 and Cks2 decreases treslin phosphorylation, and overexpression of wild-type or CDK binding-defective Cks2 prevents checkpoint-dependent dephosphorylation of treslin. Finally, we provide evidence that the role of CKS protein-dependent checkpoint override involves recovery from checkpoint-mediated arrest of DNA replication

    A novel assay of antimycobacterial activity and phagocytosis by human neutrophils

    Get PDF
    SummaryDespite abundant evidence that neutrophils arrive early at sites of mycobacterial disease and phagocytose organisms, techniques to assay phagocytosis or killing of mycobacteria by these cells are lacking. Existing assays for measuring the antimycobacterial activity of human leukocytes require cell lysis which introduces new bioactive substances and may be incomplete. They are also time-consuming and carry multiple risks of inaccuracy due to serial dilution and organism clumping. Flow cytometric techniques for measuring phagocytosis of mycobacteria by human cells have failed to adequately address the effects of organism clumping, quenching agents and culture conditions on readouts.Here we present a novel in-tube bioluminescence-based assay of antimycobacterial activity by human neutrophils. The assay yields intuitive results, with improving restriction of mycobacterial bioluminescence as the ratio of cells to organisms increases. We show that lysis of human cells is not required to measure luminescence accurately.We also present a phagocytosis assay in which we have minimised the impact of mycobacterial clumping, investigated the effect of various opsonisation techniques and established the correct usage of trypan blue to identify surface-bound organisms without counting dead cells. The same multiplicity of infection and serum conditions are optimal to demonstrate both internalisation and restriction of mycobacterial growth

    An Overview of Deep Geothermal Energy and Its Potential on the Island of Ireland

    Get PDF
    This paper provides a short overview of geothermal energy, including a discussion on the key geological controls on heat distribution in the subsurface, and on the different types of geothermal resource and their potential uses. We then discuss the island of Ireland as an example of the role that geothermal energy can play in decarbonising the heat sector in a region characterised by relatively low-enthalpy (temperature) resources. Significant shallow geothermal potential exists across the island via the deployment of ground source heat pumps. The geology of onshore Ireland provides relatively limited potential for deep hydrothermal aquifers with primary porosity and permeability. Therefore, deep geothermal exploration on the island is likely to be focused on fractured carbonate reservoirs of Carboniferous age, with recorded groundwater temperatures reaching 38°C at 1 km depth, or on lower permeability petrothermal reservoirs developed as Enhanced or Advanced Geothermal Systems. The exception to this occurs within Mesozoic basins in Northern Ireland where porous and permeable Permo-Triassic sandstones are preserved beneath Paleogene basalts. Geothermal potential also exists in equivalent basins immediately offshore Ireland. For example, Triassic sandstones within the Kish Bank Basin, a few kilometres off the coast of Dublin, have estimated reservoir temperatures of 20–120°C across the basin.Science Foundation IrelandEuropean Commission - European Regional Development Fun

    Towards a Learning System for University Campuses as Living Labs for Sustainability

    Get PDF
    Universities, due to their sizeable estates and populations of staff and students, as well as their connections with, and impact within, their local and wider communities, have significant environmental, social and economic impacts. There is a strong movement for universities to become leaders in driving society towards a more sustainable future, through improving the sustainability of the built environment and the universities’ practices and operations, and through their educational, research and wider community engagement missions. Around the globe the concept of ‘Living Labs’ has emerged as an instrument to integrate these different aspects to deliver sustainability improvements, through engaging multiple stakeholders in all of these areas, and through the co-creation of projects to improve the sustainability of the campus environment and operations, and to link these to the education, research, and wider community missions of the institution. This chapter describes a living, shared framework and methodology, the ‘Campus as Living Lab’ learning system, created through global participatory workshops and Living Lab literature, aimed at supporting universities and their Sustainability (Coordinating) Offices in the development and monitoring of Living Lab projects. The framework includes seven categories of supportive data collection and three levels of details to meet different requirements of potential users. The Living Lab framework presented in this chapter, aims to create value and help universities maximise the benefit of Living Lab projects within an institution, support monitoring, reflection and learning from projects, and facilitate communication with stakeholders, and the sharing of practices and learning between peers across the globe. As a living shared, framework and learning system, the framework will adapt and develop over time and within different contexts. To provide feedback and fast (practical) learning from users, the system will be further developed to facilitate transparent peer reviewing
    • …
    corecore