32 research outputs found

    Effects of moderate versus deep hypothermic circulatory arrest and selective cerebral perfusion on cerebrospinal fluid proteomic profiles in a piglet model of cardiopulmonary bypass

    Get PDF
    ObjectiveOur objective was to compare protein profiles of cerebrospinal fluid between control animals and those subjected to cardiopulmonary bypass after moderate versus deep hypothermic circulatory arrest with selective cerebral perfusion.MethodsImmature Yorkshire piglets were assigned to one of four study groups: (1) deep hypothermic circulatory arrest at 18°C, (2) deep hypothermic circulatory arrest at 18°C with selective cerebral perfusion, (3) moderate hypothermic circulatory arrest at 25°C with selective cerebral perfusion, or (4) age-matched control animals without surgery. Animals undergoing cardiopulmonary bypass were cooled to their assigned group temperature and exposed to 1 hour of hypothermic circulatory arrest. After arrest, animals were rewarmed, weaned off bypass, and allowed to recover for 4 hours. Cerebrospinal fluid collected from surgical animals after the recovery period was compared with cerebrospinal fluid from controls by surface-enhanced laser desorption/ionization time-of-flight mass spectrometry. Protein spectra were analyzed for differences between groups by Mann–Whitney U test and false discovery rate analysis.ResultsBaseline and postbypass physiologic parameters were similar in all surgical groups. A total of 194 protein peaks were detected. Compared with controls, groups 1, 2, and 3 had 64, 100, and 13 peaks that were significantly different, respectively (P < .05). Three of these peaks were present in all three groups. Cerebrospinal fluid protein profiles in animals undergoing cardiopulmonary bypass with moderate hypothermic circulatory arrest (group 3) were more similar to controls than either of the groups subjected to deep hypothermia.ConclusionsThe mass spectra of cerebrospinal fluid proteins are altered in piglets exposed to cardiopulmonary bypass and hypothermic circulatory arrest. Moderate hypothermic circulatory arresst (25°C) with selective cerebral perfusion compared with deep hypothermic circulatory arrest (18°C) is associated with fewer changes in cerebrospinal fluid proteins, when compared with nonbypass controls

    A multidisciplinary approach to severe bronchopulmonary dysplasia is associated with resolution of pulmonary hypertension

    Get PDF
    ObjectiveTo describe our multidisciplinary bronchopulmonary dysplasia (BPD) consult team's systematic approach to BPD associated pulmonary hypertension (PH), to report our center outcomes, and to evaluate clinical associations with outcomes.Study designRetrospective cohort of 60 patients with BPD-PH who were referred to the Seattle Children's Hospital BPD team from 2018 to 2020. Patients with critical congenital heart disease were excluded. Demographics, comorbidities, treatments, closure of hemodynamically relevant intracardiac shunts, and clinical outcomes including time to BPD-PH resolution were reviewed.ResultsMedian gestational age of the 60 patients was 25 weeks (IQR: 24–26). 20% were small for gestational age (SGA), 65% were male, and 25% received a tracheostomy. With aggressive cardiopulmonary management including respiratory support optimization, patent ductus arteriosus (PDA) and atrial septal defect (ASD) closure (40% PDA, 5% ASD, 3% both), and limited use of pulmonary vasodilators (8%), all infants demonstrated resolution of PH during the follow-up period, including three (5%) who later died from non-BPD-PH morbidities. Neither SGA status nor the timing of PH diagnosis (&lt;36 vs. ≥36 weeks PMA) impacted the time to BPD-PH resolution in our cohort [median 72 days (IQR 30.5–166.5)].ConclusionOur multidisciplinary, systematic approach to BPD-PH management was associated with complete resolution of PH with lower mortality despite less sildenafil use than reported in comparable cohorts. Unique features of our approach included aggressive PDA and ASD device closure and rare initiation of sildenafil only after lack of BPD-PH improvement with respiratory support optimization and diagnostic confirmation by cardiac catheterization

    Utility of echocardiography in predicting mortality in infants with severe bronchopulmonary dysplasia

    Get PDF
    This article is made available for unrestricted research re-use and secondary analysis in any form or by any means with acknowledgement of the original source. These permissions are granted for the duration of the World Health Organization (WHO) declaration of COVID-19 as a global pandemic.Objective: To determine the relationship between interventricular septal position (SP) and right ventricular systolic pressure (RVSP) and mortality in infants with severe BPD (sBPD). Study design: Infants with sBPD in the Children's Hospitals Neonatal Database who had echocardiograms 34-44 weeks' postmenstrual age (PMA) were included. SP and RVSP were categorized normal, abnormal (flattened/bowed SP or RVSP > 40 mmHg) or missing. Results: Of 1157 infants, 115 infants (10%) died. Abnormal SP or RVSP increased mortality (SP 19% vs. 8% normal/missing, RVSP 20% vs. 9% normal/missing, both p < 0.01) in unadjusted and multivariable models, adjusted for significant covariates (SP OR 1.9, 95% CI 1.2-3.0; RVSP OR 2.2, 95% CI 1.1-4.7). Abnormal parameters had high specificity (SP 82%; RVSP 94%), and negative predictive value (SP 94%, NPV 91%) for mortality. Conclusions: Abnormal SP or RVSP is independently associated with mortality in sBPD infants. Negative predictive values distinguish infants most likely to survive

    Ventilation Strategies During Extracorporeal Membrane Oxygenation for Neonatal Respiratory Failure: Current Approaches Among Level IV Neonatal ICUs

    Get PDF
    To describe ventilation strategies used during extracorporeal membrane oxygenation (ECMO) for neonatal respiratory failure among level IV neonatal ICUs (NICUs). Design: Cross-sectional electronic survey. Setting: Email-based Research Electronic Data Capture survey. Patients: Neonates undergoing ECMO for respiratory failure at level IV NICUs. Interventions: A 40-question survey was sent to site sponsors of regional referral neonatal ECMO centers participating in the Children\u27s Hospitals Neonatal Consortium. Reminder emails were sent at 2- and 4-week intervals. Measurements and main results: Twenty ECMO centers responded to the survey. Most primarily use venoarterial ECMO (65%); this percentage is higher (90%) for congenital diaphragmatic hernia. Sixty-five percent reported following protocol-based guidelines, with neonatologists primarily responsible for ventilator management (80%). The primary mode of ventilation was pressure control (90%), with synchronized intermittent mechanical ventilation (SIMV) comprising 80%. Common settings included peak inspiratory pressure (PIP) of 16-20 cm H2O (55%), positive end-expiratory pressure (PEEP) of 9-10 cm H2O (40%), I-time 0.5 seconds (55%), rate of 10-15 (60%), and Fio2 22-30% (65%). A minority of sites use high-frequency ventilation (HFV) as the primary mode (5%). During ECMO, 55% of sites target some degree of lung aeration to avoid complete atelectasis. Fifty-five percent discontinue inhaled nitric oxide (iNO) during ECMO, while 60% use iNO when trialing off ECMO. Nonventilator practices to facilitate decannulation include bronchoscopy (50%), exogenous surfactant (25%), and noninhaled pulmonary vasodilators (50%). Common ventilator thresholds for decannulation include PEEP of 6-7 (45%), PIP of 21-25 (55%), and tidal volume 5-5.9 mL/kg (50%). Conclusions: The majority of level IV NICUs follow internal protocols for ventilator management during neonatal respiratory ECMO, and neonatologists primarily direct management in the NICU. While most centers use pressure-controlled SIMV, there is considerable variability in the range of settings used, with few centers using HFV primarily. Future studies should focus on identifying respiratory management practices that improve outcomes for neonatal ECMO patients

    A 22-year experience in global transport extracorporeal membrane oxygenation.

    No full text
    BACKGROUND/PURPOSE: Transport extracorporeal membrane oxygenation (ECMO) is currently available at 12 centers. We report a 22-year experience from the only facility providing global transport ECMO. Indications for transport ECMO include lack of ECMO services, inability to transport conventionally, inability to wean from cardiopulmonary bypass, extracorporeal cardiopulmonary resuscitation, and need to move a patient on ECMO for specialized services such as organ transplantation. METHODS: Retrospective database review of children undergoing inhouse and transport ECMO from 1985 to 2007. RESULTS: Sixty-eight children underwent transport ECMO. Fifty-six were transported on ECMO into our facility. The remaining 12 were moved between 2 outside locations. Ground vehicles and fixed-wing aircraft were used. Distance transported was 8 to 7500 miles (13-12070 km), mean 1380 miles (2220 km). There were 116 inhouse ECMO runs. No child died during transport. Survival to discharge after transport ECMO was 65% (44/68) and, for inhouse ECMO, was 70% (81/116). CONCLUSIONS: Transport ECMO is feasible and effective, with survival rates comparable to inhouse ECMO. We have used transport ECMO to help children at non-ECMO centers with pulmonary failure who have not improved with inhaled nitric oxide and high-frequency ventilation. We have also transported a child after extracorporeal cardiopulmonary resuscitation, which may represent an emerging indication for transport ECMO. Transport ECMO often is the only option for children too unstable for conventional transport or those already on ECMO and requiring a specialized service at another facility, such as organ transplantation
    corecore