26 research outputs found

    Ground State Entropy of Potts Antiferromagnets: Bounds, Series, and Monte Carlo Measurements

    Full text link
    We report several results concerning W(Λ,q)=exp(S0/kB)W(\Lambda,q)=\exp(S_0/k_B), the exponent of the ground state entropy of the Potts antiferromagnet on a lattice Λ\Lambda. First, we improve our previous rigorous lower bound on W(hc,q)W(hc,q) for the honeycomb (hc) lattice and find that it is extremely accurate; it agrees to the first eleven terms with the large-qq series for W(hc,q)W(hc,q). Second, we investigate the heteropolygonal Archimedean 4824 \cdot 8^2 lattice, derive a rigorous lower bound, on W(482,q)W(4 \cdot 8^2,q), and calculate the large-qq series for this function to O(y12)O(y^{12}) where y=1/(q1)y=1/(q-1). Remarkably, these agree exactly to all thirteen terms calculated. We also report Monte Carlo measurements, and find that these are very close to our lower bound and series. Third, we study the effect of non-nearest-neighbor couplings, focusing on the square lattice with next-nearest-neighbor bonds.Comment: 13 pages, Latex, to appear in Phys. Rev.

    Lower Bounds and Series for the Ground State Entropy of the Potts Antiferromagnet on Archimedean Lattices and their Duals

    Full text link
    We prove a general rigorous lower bound for W(Λ,q)=exp(S0(Λ,q)/kB)W(\Lambda,q)=\exp(S_0(\Lambda,q)/k_B), the exponent of the ground state entropy of the qq-state Potts antiferromagnet, on an arbitrary Archimedean lattice Λ\Lambda. We calculate large-qq series expansions for the exact Wr(Λ,q)=q1W(Λ,q)W_r(\Lambda,q)=q^{-1}W(\Lambda,q) and compare these with our lower bounds on this function on the various Archimedean lattices. It is shown that the lower bounds coincide with a number of terms in the large-qq expansions and hence serve not just as bounds but also as very good approximations to the respective exact functions Wr(Λ,q)W_r(\Lambda,q) for large qq on the various lattices Λ\Lambda. Plots of Wr(Λ,q)W_r(\Lambda,q) are given, and the general dependence on lattice coordination number is noted. Lower bounds and series are also presented for the duals of Archimedean lattices. As part of the study, the chromatic number is determined for all Archimedean lattices and their duals. Finally, we report calculations of chromatic zeros for several lattices; these provide further support for our earlier conjecture that a sufficient condition for Wr(Λ,q)W_r(\Lambda,q) to be analytic at 1/q=01/q=0 is that Λ\Lambda is a regular lattice.Comment: 39 pages, Revtex, 9 encapsulated postscript figures, to appear in Phys. Rev.

    Asymptotic Limits and Zeros of Chromatic Polynomials and Ground State Entropy of Potts Antiferromagnets

    Full text link
    We study the asymptotic limiting function W(G,q)=limnP(G,q)1/nW({G},q) = \lim_{n \to \infty}P(G,q)^{1/n}, where P(G,q)P(G,q) is the chromatic polynomial for a graph GG with nn vertices. We first discuss a subtlety in the definition of W(G,q)W({G},q) resulting from the fact that at certain special points qsq_s, the following limits do not commute: limnlimqqsP(G,q)1/nlimqqslimnP(G,q)1/n\lim_{n \to \infty} \lim_{q \to q_s} P(G,q)^{1/n} \ne \lim_{q \to q_s} \lim_{n \to \infty} P(G,q)^{1/n}. We then present exact calculations of W(G,q)W({G},q) and determine the corresponding analytic structure in the complex qq plane for a number of families of graphs G{G}, including circuits, wheels, biwheels, bipyramids, and (cyclic and twisted) ladders. We study the zeros of the corresponding chromatic polynomials and prove a theorem that for certain families of graphs, all but a finite number of the zeros lie exactly on a unit circle, whose position depends on the family. Using the connection of P(G,q)P(G,q) with the zero-temperature Potts antiferromagnet, we derive a theorem concerning the maximal finite real point of non-analyticity in W(G,q)W({G},q), denoted qcq_c and apply this theorem to deduce that qc(sq)=3q_c(sq)=3 and qc(hc)=(3+5)/2q_c(hc) = (3+\sqrt{5})/2 for the square and honeycomb lattices. Finally, numerical calculations of W(hc,q)W(hc,q) and W(sq,q)W(sq,q) are presented and compared with series expansions and bounds.Comment: 33 pages, Latex, 5 postscript figures, published version; includes further comments on large-q serie
    corecore