57 research outputs found

    Groundwater “fast paths” in the Snake River Plain aquifer: Radiogenic isotope ratios as natural groundwater tracers

    Get PDF
    Preferential flow paths are expected in many groundwater systems and must be located because they can greatly affect contaminant transport. The fundamental characteristics of radiogenic isotope ratios in chemically evolving waters make them highly effective as preferential flow path indicators. These ratios tend to be more easily interpreted than solute-concentration data because their response to water-rock interaction is less complex. We demonstrate this approach with groundwater {sup 87}Sr/{sup 86}Sr ratios in the Snake River Plain aquifer within and near the Idaho National Engineering and Environmental Laboratory. These data reveal slow-flow zones as lower {sup 87}Sr/{sup 86}Sr areas created by prolonged interaction with the host basalts and a relatively fast flowing zone as a high {sup 87}Sr/{sup 86}Sr area

    The role of equilibrium and disequilibrium in modeling regional growth and decline: a critical reassessment

    Get PDF
    While unable to copy/paste the abstract, the paper argues that regional differentials in wages and rents are overwhelmingly of an equilibrium nature, with disequilibrium forces having little systematic influenc

    Municipal Corporations, Homeowners, and the Benefit View of the Property Tax

    Full text link

    Sample seal-and-drop device and methodology for high temperature oxide melt solution calorimetric measurements of PuO2.

    No full text
    Thermodynamic properties of refractory materials, such as standard enthalpy of formation, heat content, and enthalpy of reaction, can be measured by high temperature calorimetry. In such experiments, a small sample pellet is dropped from room temperature into a calorimeter operating at high temperature (often 700 °C) with or without a molten salt solvent present in an inert crucible in the calorimeter chamber. However, for hazardous (radioactive, toxic, etc.) and/or air-sensitive (hygroscopic, sensitive to oxygen, pyrophoric, etc.) samples, it is necessary to utilize a sealed device to encapsulate and isolate the samples, crucibles, and solvent under a controlled atmosphere in order to prevent the materials from reactions and/or protect the personnel from hazardous exposure during the calorimetric experiments. We have developed a sample seal-and-drop device (calorimetric dropper) that can be readily installed onto the dropping tube of a calorimeter such as the Setaram AlexSYS Calvet-type high temperature calorimeter to fulfill two functions: (i) load hazardous or air-sensitive samples in an air-tight, sealed container and (ii) drop the samples into the calorimeter chamber using an "off-then-on" mechanism. As a case study, we used the calorimetric dropper for measurements of the enthalpy of drop solution of PuO2 in molten sodium molybdate (3Na2O·4MoO3) solvent at 700 °C. The obtained enthalpy of -52.21 ± 3.68 kJ/mol is consistent with the energetic systematics of other actinide oxides (UO2, ThO2, and NpO2). This capability has thus laid the foundation for thermodynamic studies of other Pu-bearing phases in the future
    • …
    corecore