1,213 research outputs found

    Advances in the genetics of endometriosis

    Get PDF
    Endometriosis is a gynecological disease characterized by implantation of endometrial tissue outside of the uterus. Early familial aggregation and twin studies noted a higher risk of endometriosis among relatives. Studies on the roles of the environment, genetics and aberrant regulation in the endometrium and endometriotic lesions of women with endometriosis suggest that endometriosis arises from the interplay between genetic variants and environmental factors. Elucidating the hereditary component has proven difficult because multiple genes seem to produce a susceptibility to developing endometriosis. Molecular techniques, including linkage and genome-wide analysis, have identified candidate genes located near known loci related to development and regulation of the female reproductive tract. As new candidate genes are discovered and hereditary pathways identified using technologies such as genome-wide analysis, the possibility of prevention and treatment becomes more tangible for millions of women affected by endometriosis. Here, we discuss the advances of genetic research in endometriosis and describe technologies that have contributed to the current understanding of the genetic variability in endometriosis, variability that includes regulatory polymorphisms in key genes

    Report on the State of Available Data for the Study of International Trade and Foreign Direct Investment

    Get PDF
    This report, prepared for the Committee on Economic Statistics of the American Economic Association, examines the state of available data for the study of international trade and foreign direct investment. Data on values of imports and exports of goods are of high quality and coverage, but price data suffer from insufficient detail. It would be desirable to have more data measuring value-added in trade as well as prices of comparable domestic and imported inputs. Value data for imports and exports of services are too aggregated and valuations are questionable, while price data for service exports and imports are almost non-existent. Foreign direct investment data are of high quality but quality has suffered from budget cuts. Data on trade in intellectual property are fragmentary. The intangibility of the trade makes measurement difficult, but budget cuts have added to the difficulties. Modest funding increases would result in data more useful for research and policy analysis.

    Vemurafenib-resistant BRAF-V600E-mutated melanoma is regressed by MEK-targeting drug trametinib, but not cobimetinib in a patient-derived orthotopic xenograft (PDOX) mouse model.

    Get PDF
    Melanoma is a recalcitrant disease. The present study used a patient-derived orthotopic xenograft (PDOX) model of melanoma to test sensitivity to three molecularly-targeted drugs and one standard chemotherapeutic. A BRAF-V600E-mutant melanoma obtained from the right chest wall of a patient was grown orthotopically in the right chest wall of nude mice to establish a PDOX model. Two weeks after implantation, 50 PDOX nude mice were divided into 5 groups: G1, control without treatment; G2, vemurafenib (VEM) (30 mg/kg); G3; temozolomide (TEM) (25 mg/kg); G4, trametinib (TRA) (0.3 mg/kg); and G5, cobimetinib (COB) (5 mg/kg). Each drug was administered orally, daily for 14 consecutive days. Tumor sizes were measured with calipers twice a week. On day 14 from initiation of treatment, TRA, an MEK inhibitor, was the only agent of the 4 tested that caused tumor regression (P < 0.001 at day 14). In contrast, another MEK inhibitor, COB, could slow but not arrest growth or cause regression of the melanoma. First-line therapy TEM could slow but not arrest tumor growth or cause regression. The patient in this study had a BRAF-V600E-mutant melanoma and would be considered to be a strong candidate for VEM as first-line therapy, since VEM targets this mutation. However, VEM was not effective. The PDOX model thus helped identify the very-high efficacy of TRA against the melanoma PDOX and is a promising drug for this patient. These results demonstrate the powerful precision of the PDOX model for cancer therapy, not achievable by genomic analysis alone

    Messenger RNA coding for only the alpha subunit of the rat brain Na channel is sufficient for expression of functional channels in Xenopus oocytes

    Get PDF
    Several cDNA clones coding for the high molecular weight (alpha) subunit of the voltage-sensitive Na channel have been selected by immunoscreening a rat brain cDNA library constructed in the expression vector lambda gt11. As will be reported elsewhere, the amino acid sequence translated from the DNA sequence shows considerable homology to that reported for the Electrophorus electricus electroplax Na channel. Several of the cDNA inserts hybridized with a low-abundance 9-kilobase RNA species from rat brain, muscle, and heart. Sucrose-gradient fractionation of rat brain poly(A) RNA yielded a high molecular weight fraction containing this mRNA, which resulted in functional Na channels when injected into oocytes. This fraction contained undetectable amounts of low molecular weight RNA. The high molecular weight Na channel RNA was selected from rat brain poly(A) RNA by hybridization to a single-strand antisense cDNA clone. Translation of this RNA in Xenopus oocytes resulted in the appearance of tetrodotoxin-sensitive voltage-sensitive Na channels in the oocyte membrane. These results demonstrate that mRNA encoding the alpha subunit of the rat brain Na channel, in the absence of any beta-subunit mRNA, is sufficient for translation to give functional channels in oocytes

    Temozolomide combined with irinotecan caused regression in an adult pleomorphic rhabdomyosarcoma patient-derived orthotopic xenograft (PDOX) nude-mouse model.

    Get PDF
    Adult pleomorphic rhabdomyosarcoma (RMS) is a rare and recalcitrant, highly-malignant mesenchymal tumor in need of improved therapeutic strategies. Our laboratory pioneered the patient-derived orthotopic xenograft (PDOX) nude mouse model with the technique of surgical orthotopic implantation (SOI). We previously described the development of a PDOX model of adult pleomorphic RMS where the tumor behaved similar to the patient donor. A high-grade pleomorphic rhabdomyosarcoma from a striated muscle was previously grown orthotopically in the right biceps-femoris muscle of nude mice to establish the PDOX model. In the present study, the PDOX models were randomized into the following treatment groups when tumor volume reached 100 mm3: G1, control without treatment; G2, cyclophosphamide (CPA) 140 mg/kg, intraperitoneal (i.p.) injection, weekly, for 3 weeks; G3, temozolomide (TEM), 25 mg/kg, per oral (p.o.), daily, for 21 days; G4, temozolomide (TEM) 25 mg/kg, p.o., daily, for 21 days combined with irinotecan (IRN), 4 mg/kg, i.p., daily for 21 days. After 3 weeks, treatment of PDOX with TEM combined with IRN was so powerful that it resulted in tumor regression and the smallest tumor volume compared to other groups. The RMS PDOX model should be of use to design the treatment program for the patient and for drug discovery and evaluation for this recalcitrant tumor type

    Tumor-targeting Salmonella typhimurium A1-R combined with temozolomide regresses malignant melanoma with a BRAF-V600E mutation in a patient-derived orthotopic xenograft (PDOX) model.

    Get PDF
    Melanoma is a recalcitrant disease in need of transformative therapuetics. The present study used a patient-derived orthotopic xenograft (PDOX) nude-mouse model of melanoma with a BRAF-V600E mutation to determine the efficacy of temozolomide (TEM) combined with tumor-targeting Salmonella typhimurium A1-R. A melanoma obtained from the right chest wall of a patient was grown orthotopically in the right chest wall of nude mice to establish a PDOX model. Two weeks after implantation, 40 PDOX nude mice were divided into 4 groups: G1, control without treatment (n = 10); G2, TEM (25 mg/kg, administrated orally daily for 14 consecutive days, n = 10); G3, S. typhimurium A1-R (5 × 107 CFU/100 μl, i.v., once a week for 2 weeks, n = 10); G4, TEM combined with S. typhimurium A1-R (25 mg/kg, administrated orally daily for 14 consecutive days and 5 × 107 CFU/100 μl, i.v., once a week for 2 weeks, respectively, n = 10). Tumor sizes were measured with calipers twice a week. On day 14 from initiation of treatment, all treatments significantly inhibited tumor growth compared to untreated control (TEM: p < 0.0001; S. typhimurium A1-R: p < 0.0001; TEM combined with S. typhimurium A1-R: p < 0.0001). TEM combined with S. typhimurium A1-R was significantly more effective than either S. typhimurium A1-R (p = 0.0004) alone or TEM alone (p = 0.0017). TEM combined with S. typhimurium A1-R could regress the melanoma in the PDOX model and has important future clinical potential for melanoma patients

    A patient-derived orthotopic xenograft (PDOX) mouse model of a cisplatinum-resistant osteosarcoma lung metastasis that was sensitive to temozolomide and trabectedin: implications for precision oncology.

    Get PDF
    In the present study, we evaluated the efficacy of trabectedin (TRAB) and temozolomide (TEM) compared to cisplatinum (CDDP) on a patient-derived orthotopic xenogrraft (PDOX) of a lung-metastasis from an osteosarcoma of a patient who failed CDDP therapy. Osteosarcoma resected from the patient was implanted orthotopically in the distal femur of mice to establish PDOX models which were randomized into the following groups when tumor volume reached approximately 100 mm3: G1, control without treatment; G2, CDDP (6 mg/kg, intraperitoneal injection, weekly, for 2 weeks); G3, TRAB (0.15 mg/kg, intravenous injection, weekly, for 2 weeks); G4, TEM (25 mg/kg, oral, daily, for 14 days). Tumor sizes and body weight were measured with calipers and a digital balance twice a week. On day 14 after initiation of treatment, TEM and TRAB, but not CDDP, significantly inhibited tumor volume compared to untreated control: control (G1): 814.5±258.8 mm3; CDDP (G2): 608.6±126.9 mm3, TRAB (G3): 286.6±133.0 mm3; TEM (G4): 182.9±69.1 mm3. CDDP vs. control, p=0.07; TRAB vs. control, p=0.0004; TEM vs. control p =0.0002; TRAB vs. CDDP, p =0.0002; TEM vs. CDDP, p =0.00003. The results of the present study show that a PDOX model of an osteosarcoma lung-metastasis that recurred after adjuvant CDDP-treatment has identified potentially, highly-effective drugs for this recalcitrant disease, while precisely maintaining the CDDP resistance of the tumor in the patient, thereby demonstrating the potential of the osteosarcoma PDOX model for precision oncology

    The lesson of causal discovery algorithms for quantum correlations: Causal explanations of Bell-inequality violations require fine-tuning

    Full text link
    An active area of research in the fields of machine learning and statistics is the development of causal discovery algorithms, the purpose of which is to infer the causal relations that hold among a set of variables from the correlations that these exhibit. We apply some of these algorithms to the correlations that arise for entangled quantum systems. We show that they cannot distinguish correlations that satisfy Bell inequalities from correlations that violate Bell inequalities, and consequently that they cannot do justice to the challenges of explaining certain quantum correlations causally. Nonetheless, by adapting the conceptual tools of causal inference, we can show that any attempt to provide a causal explanation of nonsignalling correlations that violate a Bell inequality must contradict a core principle of these algorithms, namely, that an observed statistical independence between variables should not be explained by fine-tuning of the causal parameters. In particular, we demonstrate the need for such fine-tuning for most of the causal mechanisms that have been proposed to underlie Bell correlations, including superluminal causal influences, superdeterminism (that is, a denial of freedom of choice of settings), and retrocausal influences which do not introduce causal cycles.Comment: 29 pages, 28 figs. New in v2: a section presenting in detail our characterization of Bell's theorem as a contradiction arising from (i) the framework of causal models, (ii) the principle of no fine-tuning, and (iii) certain operational features of quantum theory; a section explaining why a denial of hidden variables affords even fewer opportunities for causal explanations of quantum correlation
    corecore