338 research outputs found

    GALES (Reino Unido). Mapas generales (1795). 1:80000

    Get PDF
    Comprende desde la bahía Cardigan hasta la costa septentrional del Pais de GalesEscala gráfica de 6 millas estatutarias [= 12 cm]. Coordenadas referidas a un meridiano que no se especifica, probablemente Londres o Greenwich (E 5°15'--E 2°49'/N 53°24'--N 52°19'). Orientado con flechaOrografía por normalesLímites entre los condados diferenciados por coloresDedicatoria y título decorados con un grabado que representa las ruinas de una iglesi

    The Real and Redshift Space Density Distribution Function for Large-Scale Structure in the Spherical Collapse Approximation

    Get PDF
    We use the spherical collapse (SC) approximation to derive expressions for the smoothed redshift-space probability distribution function (PDF), as well as the pp-order hierarchical amplitudes SpS_p, in both real and redshift space. We compare our results with numerical simulations, focusing on the Ω=1\Omega=1 standard CDM model, where redshift distortions are strongest. We find good agreement between the SC predictions and the numerical PDF in real space even for \sigma_L \simgt 1, where σL\sigma_L is the linearly-evolved rms fluctuation on the smoothing scale. In redshift space, reasonable agreement is possible only for \sigma_L \simlt 0.4. Numerical simulations also yield a simple empirical relation between the real-space PDF and redshift-space PDF: we find that for \sigma \simlt 1, the redshift space PDF, P[\delta_z], is, to a good approximation, a simple rescaling of the real space PDF, P[\delta], i.e., P[\delta/\sigma] d[\delta/\sigma] = P[\delta_z/\sigma_z] d[\delta_z/\sigma_z], where σ\sigma and \sigma_z are the real-space and redshift-space rms fluctuations, respectively. This result applies well beyond the validity of linear perturbation theory, and it is a good fit for both the standard CDM model and the Lambda-CDM model. It breaks down for SCDM at σ1\sigma \approx 1, but provides a good fit to the \Lambda-CDM models for σ\sigma as large as 0.8.Comment: 9 pages, latex, 12 figures added (26 total), minor changes to conclusions, to appear in MNRA

    Neurohormonal signaling via a sulfotransferase antagonizes insulin-like signaling to regulate a Caenorhabditis elegans stress response

    Get PDF
    Insulin and insulin-like signaling regulates a broad spectrum of growth and metabolic responses to a variety of internal and environmental stimuli. For example, the inhibition of insulin-like signaling in C. elegans mediates its response to both osmotic stress and starvation. We report that in response to osmotic stress the cytosolic sulfotransferase SSU-1 antagonizes insulin-like signaling and promotes developmental arrest. Both SSU-1 and the DAF-16 FOXO transcription factor, which is activated when insulin signaling is low, are needed to drive specific responses to reduced insulin-like signaling. We demonstrate that SSU-1 functions in a single pair of sensory neurons to control intercellular signaling via the nuclear hormone receptor NHR-1 and promote both the specific transcriptional response to osmotic stress and altered lysophosphatidylcholine metabolism. Our results show the requirement of a sulfotransferase–nuclear hormone receptor neurohormonal signaling pathway for some but not all consequences of reduced insulin-like signaling.National Center for Research Resources (U.S.)National Institutes of Health (U.S.) (grant GM024663)National Science Foundation (U.S.) (grant 1122374)University of Cambridge. Centre for Trophoblast Research (Next Generation Fellowship)National Institutes of Health (U.S.) (grant GM117408

    First Measurement of the Clustering Evolution of Photometrically-Classified Quasars

    Get PDF
    We present new measurements of the quasar autocorrelation from a sample of \~80,000 photometrically-classified quasars taken from SDSS DR1. We find a best-fit model of ω(θ)=(0.066±0.0240.026)θ(0.98±0.15)\omega(\theta) = (0.066\pm^{0.026}_{0.024})\theta^{-(0.98\pm0.15)} for the angular autocorrelation, consistent with estimates from spectroscopic quasar surveys. We show that only models with little or no evolution in the clustering of quasars in comoving coordinates since z~1.4 can recover a scale-length consistent with local galaxies and Active Galactic Nuclei (AGNs). A model with little evolution of quasar clustering in comoving coordinates is best explained in the current cosmological paradigm by rapid evolution in quasar bias. We show that quasar biasing must have changed from b_Q~3 at a (photometric) redshift of z=2.2 to b_Q~1.2-1.3 by z=0.75. Such a rapid increase with redshift in biasing implies that quasars at z~2 cannot be the progenitors of modern L* objects, rather they must now reside in dense environments, such as clusters. Similarly, the duration of the UVX quasar phase must be short enough to explain why local UVX quasars reside in essentially unbiased structures. Our estimates of b_Q are in good agreement with recent spectroscopic results, which demonstrate the implied evolution in b_Q is consistent with quasars inhabiting halos of similar mass at every redshift. Treating quasar clustering as a function of both redshift and luminosity, we find no evidence for luminosity dependence in quasar clustering, and that redshift evolution thus affects quasar clustering more than changes in quasars' luminosity. We provide a new method for quantifying stellar contamination in photometrically-classified quasar catalogs via the correlation function.Comment: 34 pages, 10 figures, 1 table, Accepted to ApJ after: (i) Minor textual changes; (ii) extra points added to Fig.

    Neurohormonal signaling via a sulfotransferase antagonizes insulin-like signaling to regulate a Caenorhabditis elegans stress response.

    Get PDF
    Insulin and insulin-like signaling regulates a broad spectrum of growth and metabolic responses to a variety of internal and environmental stimuli. For example, the inhibition of insulin-like signaling in C. elegans mediates its response to both osmotic stress and starvation. We report that in response to osmotic stress the cytosolic sulfotransferase SSU-1 antagonizes insulin-like signaling and promotes developmental arrest. Both SSU-1 and the DAF-16 FOXO transcription factor, which is activated when insulin signaling is low, are needed to drive specific responses to reduced insulin-like signaling. We demonstrate that SSU-1 functions in a single pair of sensory neurons to control intercellular signaling via the nuclear hormone receptor NHR-1 and promote both the specific transcriptional response to osmotic stress and altered lysophosphatidylcholine metabolism. Our results show the requirement of a sulfotransferase-nuclear hormone receptor neurohormonal signaling pathway for some but not all consequences of reduced insulin-like signaling

    Star Formation History of the Hubble Ultra Deep Field: Comparison with the HDFN

    Get PDF
    We use the NICMOS Treasury and ACS HUDF images to measure the extinction corrected star formation history for 4681 galaxies in the region common to both images utilizing the star formation rate distribution function and other techniques similar to those employed with the NICMOS and WFPC2 images in the HDFN. Unlike the HDFN the NICMOS region of the HUDF appears to lack highly luminous and high star formation rate galaxies at redshifts beyond 3. The HUDF provides a region that is completely uncorrelated to the HDFN and therefore provides and independent measure of the star formation history of the universe. The combined HUDF and HDFN star formation rates show an average star formation rate of 0.2 solar masses per yer per cubic megaparsec. The average SFR of the combined fields at z = 1-3 is 0.29 solar masses per year per cubic megaparsec while the average at z = 4-6 is 1.2 solar masses per year per cubic megaparsec. The SFRs at all redshifts are within 3 sigma of the average over all redshifts.Comment: Accepted for publication in the Astrophysical Journa

    Clustering Analyses of 300,000 Photometrically Classified Quasars--I. Luminosity and Redshift Evolution in Quasar Bias

    Full text link
    Using ~300,000 photometrically classified quasars, by far the largest quasar sample ever used for such analyses, we study the redshift and luminosity evolution of quasar clustering on scales of ~50 kpc/h to ~20 Mpc/h from redshifts of z~0.75 to z~2.28. We parameterize our clustering amplitudes using realistic dark matter models, and find that a LCDM power spectrum provides a superb fit to our data with a redshift-averaged quasar bias of b_Q = 2.41+/-0.08 (P<χ2=0.847P_{<\chi^2}=0.847) for σ8=0.9\sigma_8=0.9. This represents a better fit than the best-fit power-law model (ω=0.0493±0.0064θ0.928±0.055\omega = 0.0493\pm0.0064\theta^ {-0.928\pm0.055}; P<χ2=0.482P_{<\chi^2}=0.482). We find b_Q increases with redshift. This evolution is significant at >99.6% using our data set alone, increasing to >99.9999% if stellar contamination is not explicitly parameterized. We measure the quasar classification efficiency across our full sample as a = 95.6 +/- ^{4.4}_{1.9}%, a star-quasar separation comparable with the star-galaxy separation in many photometric studies of galaxy clustering. We derive the mean mass of the dark matter halos hosting quasars as MDMH=(5.2+/-0.6)x10^{12} M_solar/h. At z~1.9 we find a 1.5σ1.5\sigma deviation from luminosity-independent quasar clustering; this suggests that increasing our sample size by a factor of 1.8 could begin to constrain any luminosity dependence in quasar bias at z~2. Our results agree with recent studies of quasar environments at z < 0.4, which detected little luminosity dependence to quasar clustering on proper scales >50 kpc/h. At z < 1.6, our analysis suggests that b_Q is constant with luminosity to within ~0.6, and that, for g < 21, angular quasar autocorrelation measurements are unlikely to have sufficient statistical power at z < 1.6 to detect any luminosity dependence in quasars' clustering.Comment: 13 pages, 9 figures, 2 tables; uses amulateapj; accepted to Ap

    The Chemical Properties of Milky Way and M31 Globular Clusters: I. A Comparative Study

    Full text link
    A comparative analysis is performed between high-quality integrated spectra of 30 globular clusters in M31, 20 Milky Way clusters, and a sample of field and cluster elliptical galaxies. We find that the Lick CN indices in the M31 and Galactic clusters are enhanced relative to the bulges of the Milky Way, M31, and elliptical spheroids. Although not seen in the Lick CN indices, the near-UV cyanogen feature (3883 A) is strongly enhanced in M31 clustesr with respect to the Galactic globulars at metallicities, --1.5<[Fe/H]<--0.3. Carbon shows signs of varying amongst these two groups. For [Fe/H]>--0.8, we observe no siginificant differences in the Hdelta, Hgamma, or Hbeta indices between the M31 and Galactic globulars. The sample of ellipticals lies offset from the loci of all the globulars in the Cyanogen--[MgFe], and Balmer--[MgFe] planes. Six of the M31 cluster spectra appear young, and are projected onto the M31 disk. Population synthesis models suggest that these are metal-rich clusters with ages 100--800 Myr, metallicities --0.20 < [Fe/H] <0.35, and masses 0.7 -7.0x10^4 Msun. Two other young clusters are Hubble V in NGC 205, and an older (~3 Gyr) cluster ~7 kpc away from the plane of the disk. The six clusters projected onto the disk rotate in a similar fashion to the HI gas in M31, and three clusters exhibit thin disk kinematics (Morrison et al.). Dynamical masses and structural parameters are required for these objects to determine whether they are massive open clusters or globular clusters. If the latter, our findings suggest globular clusters may trace the build up of galaxy disks. In either case, we conclude that these clusters are part of a young, metal-rich disk cluster system in M31, possibly as young as 1 Gyr old.Comment: 52 pages, 14 figures, 8 tables, minor revisions in response to referee, conclusions remain the same. Scheduled to appear in the October 2004 issue of The Astronomical Journa
    corecore