19 research outputs found

    Trabecular bone volume and osteoprotegerin expression in uremic rats given high calcium

    Get PDF
    Calcium (Ca)-containing phosphate binders have been recommended for the treatment of hyperphosphatemia in children with chronic kidney disease. To study the effects of high Ca levels on trabecular bone volume (BV) and osteoprotegerin (OPG) expression in uremic young rats, a model of marked overcorrection of secondary hyperparathyroidism was created by providing a diet of high Ca to 5/6 nephrectomized young rats (Nx-Ca) for 4 weeks. The results of chondrocyte proliferation and apoptosis, osteoclastic activity, OPG expression and BV were compared among intact rats given the control diet, intact rats given a high Ca diet and 5/6 nephrectomized rats given the control diet (Nx-Control) and the high Ca diet (Nx-Ca). Ionized Ca levels were higher and parathyroid hormone levels were lower in Nx-Ca rats than in the other groups. Final weight, final length and final tibial length of Nx-Ca rats were significantly less than those of the other groups, although the length gain did not differ among the groups. The hypertrophic zone width was markedly enlarged in Nx-Ca rats. Chondrocyte proliferation rates did not differ among the groups, whereas osteoclastic activity was decreased in Nx-Ca rats compared with the Nx-Control animals. The OPG expression and BV were increased in Nx-Ca rats compared with the Nx-Control rats. Increased BV should improve bone strength, whereas disturbance of osteoclastogenesis interferes with bone remodeling. Bone quality has yet to be determined in high Ca-fed uremic young rats

    The use of mycophenolate mofetil suspension in pediatric renal allograft recipients

    Full text link
    Mycophenolate mofetil (MMF) is widely used to prevent acute rejection in adults after renal, cardiac, and liver transplantation. This study investigated the safety, tolerability, and pharmacokinetics of MMF suspension in pediatric renal allograft recipients. One hundred renal allograft recipients were enrolled into three age groups (33 patients, 3 months to <6 years; 34 patients, 6 to <12 years; 33 patients, 12 to 18 years). Patients received MMF 600 mg/m 2 b.i.d. concomitantly with cyclosporine and corticosteroids with or without antilymphocyte antibody induction. One year after transplantation, patient and graft survival (including death) were 98% and 93%, respectively. Twenty-five patients (25%) experienced a biopsy-proven (Banff grade borderline or higher) or presumptive acute rejection within the first 6 months post-transplantation. Analysis of pharmacokinetic parameters for mycophenolic acid (MPA) and mycophenolic acid glucuronide showed no clinically significant differences among the age groups. The dosing regimen of MMF 600 mg/m 2 b.i.d. achieved the targeted early post-transplantation MPA 12-h area under concentration-time curve (AUC 0–12 ) of 27.2 µg h per ml. Adverse events had similar frequencies among the age groups (with the exception of diarrhea, leukopenia, sepsis, and anemia, which were more frequent in the <6 years age group) and led to withdrawal of MMF in about 10% of patients. Administration of MMF 600 mg/m 2 b.i.d. is effective in prevention of acute rejection, provides predictable pharmacokinetics, and is associated with an acceptable safety profile in pediatric renal transplant recipients.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/42304/1/467-16-12-978_10160978.pd

    The Evaluation of the Child With Proteinuria

    No full text

    Renal Transplantation in Children

    No full text

    Accelerated rejection, thrombosis, and graft failure with angiotensin II type 1 receptor antibodies.

    No full text
    BackgroundAngiotensin II type 1 receptor antibodies (AT1R-Abs) have been implicated in renal transplant rejection and failure; however, the mechanism of allograft damage, patterns of clinical presentation, and response to desensitization of AT1R-Abs have not been clearly established.Case diagnosis/treatmentWe present the case of a 7-year-old boy with preformed AT1R-Abs who developed accelerated vascular and cellular rejection and renal allograft thrombosis despite desensitization and treatment with angiotensin receptor blockade. Although an association between AT1R-Abs and microvascular occlusion has been previously described, we are the first to describe an association between AT1R-Abs and renal artery thrombosis, leading to devastating early allograft failure.ConclusionsThis case highlights the risk of allograft thrombosis associated with AT1R-Abs and illustrates that previous treatments utilized for AT1R-Abs may not always be effective. Further studies are needed to better characterize the mechanisms of AT1R-Ab pathogenesis and to establish safe levels of AT1R-Abs both pre- and post-transplantation. Given the outcome of this patient and the evidence of pro-coagulatory effects of AT1R-Abs, we suggest that the presence of AT1R-Ab may be a risk factor for thrombosis. The role of treatment with anti-coagulation and novel immunomodulatory agents such as tocilizumab and bortezomib require further investigation
    corecore