30 research outputs found

    Enterocyte Shedding and Epithelial Lining Repair Following Ischemia of the Human Small Intestine Attenuate Inflammation

    Get PDF
    BACKGROUND: Recently, we observed that small-intestinal ischemia and reperfusion was found to entail a rapid loss of apoptotic and necrotic cells. This study was conducted to investigate whether the observed shedding of ischemically damaged epithelial cells affects IR induced inflammation in the human small gut. METHODS AND FINDINGS: Using a newly developed IR model of the human small intestine, the inflammatory response was studied on cellular, protein and mRNA level. Thirty patients were consecutively included. Part of the jejunum was subjected to 30 minutes of ischemia and variable reperfusion periods (mean reperfusion time 120 (+/-11) minutes). Ethical approval and informed consent were obtained. Increased plasma intestinal fatty acid binding protein (I-FABP) levels indicated loss in epithelial cell integrity in response to ischemia and reperfusion (p<0.001 vs healthy). HIF-1alpha gene expression doubled (p = 0.02) and C3 gene expression increased 4-fold (p = 0.01) over the course of IR. Gut barrier failure, assessed as LPS concentration in small bowel venous effluent blood, was not observed (p = 0.18). Additionally, mRNA expression of HO-1, IL-6, IL-8 did not alter. No increased expression of endothelial adhesion molecules, TNFalpha release, increased numbers of inflammatory cells (p = 0.71) or complement activation, assessed as activated C3 (p = 0.14), were detected in the reperfused tissue. CONCLUSIONS: In the human small intestine, thirty minutes of ischemia followed by up to 4 hours of reperfusion, does not seem to lead to an explicit inflammatory response. This may be explained by a unique mechanism of shedding of damaged enterocytes, reported for the first time by our group

    Bone marrow stromal cells attenuate sepsis via prostaglandin E2— dependent reprogramming of host macrophages to increase their interleukin-10 production

    Get PDF
    Sepsis causes over 200,000 deaths yearly in the US; better treatments are urgently needed. Administering bone marrow stromal cells (BMSCs—also known as mesenchymal stem cells) to mice before or shortly after inducing sepsis by cecal ligation and puncture reduced mortality and improved organ function. The beneficial effect of BMSCs was eliminated by macrophage depletion or pretreatment with antibodies specific for interleukin-10 (IL-10) or IL-10 receptor. Monocytes and/ or macrophages from septic lungs made more IL-10 when prepared from mice treated with BMSCs versus untreated mice. Lipopolysaccharide (LPS)-stimulated macrophages produced more IL-10 when cultured with BMSCs, but this effect was eliminated if the BMSCs lacked the genes encoding Toll-like receptor 4, myeloid differentiation primary response gene-88, tumor necrosis factor (TNF) receptor-1a or cyclooxygenase-2. Our results suggest that BMSCs (activated by LPS or TNF-α) reprogram macrophages by releasing prostaglandin E2 that acts on the macrophages through the prostaglandin EP2 and EP4 receptors. Because BMSCs have been successfully given to humans and can easily be cultured and might be used without human leukocyte antigen matching, we suggest that cultured, banked human BMSCs may be effective in treating sepsis in high-risk patient groups.Sepsis, a serious medical condition that affects 18 million people per year worldwide, is characterized by a generalized inflammatory state caused by infection. Widespread activation of inflammation and coagulation pathways progresses to multiple organ dysfunction, collapse of the circulatory system (septic shock) and death. Because as many people die of sepsis annually as from acute myocardial infarction1, a new treatment regimen is desperately needed. In the last few years, it has been discovered that BMSCs are potent modulators of immune responses2-5. We wondered whether such cells could bring the immune response back into balance, thus attenuating the underlying pathophysiology that eventually leads to severe sepsis, septic shock and death6,7. As a model of sepsis, we chose cecal ligation and puncture (CLP), a procedure that has been used for more than two decades8. This mouse model closely resembles the human disease: it has a focal origin (cecum), is caused by multiple intestinal organisms, and results in septicemia with release of bacterial toxins into the circulation. With no treatment, the majority of the mice die 24-48 h postoperatively. Originally published Nature Medicine, Vol. 15, No. 1, Jan 200

    Lysophosphatidic Acid Prevents Renal Ischemia-Reperfusion Injury by Inhibition of Apoptosis and Complement Activation

    No full text
    Renal ischemia-reperfusion (I/R) injury is an important cause of acute renal failure as observed after renal transplantation, major surgery, trauma, and septic as well as hemorrhagic shock. We previously showed that the inhibition of apoptosis is protective against renal I/R injury, indicating that apoptotic cell-death is an important feature of I/R injury. Lysophosphatidic acid (LPA) is an endogenous phospholipid growth factor with anti-apoptotic properties. This tempted us to investigate the effects of exogenous LPA in a murine model of renal I/R injury. LPA administered at the time of reperfusion dose dependently inhibited renal apoptosis as evaluated by the presence of internucleosomal DNA cleavage. I/R-induced renal apoptosis was only present in tubular epithelial cells with evident disruption of brush border as assessed by immunohistochemistry for active caspase-7 and filamentous actin, respectively. LPA treatment specifically prevented tubular epithelial cell apoptosis but also reduced the I/R-induced loss of brush-border integrity. Besides, LPA showed strong anti-inflammatory effects, inhibiting the renal expression of tumor necrosis factor-α and abrogating the influx of neutrophils. Next, LPA dose dependently inhibited activation of the complement system. Moreover, treatment with LPA abrogated the loss of renal function in the course of renal I/R. This study is the first to show that administration of the phospholipid LPA prevents I/R injury, abrogating apoptosis and inflammation. Moreover, exogenous LPA is capable of preventing organ failure because of an ischemic insult and thus may provide new means to treat clinical conditions associated with I/R injury in the kidney and potentially also in other organs

    C-reactive protein and drain amylase: their utility in ruling out anastomotic leakage after minimally invasive Ivor-Lewis esophagectomy

    No full text
    Anastomotic leakage (AL) is one of the most feared complications after esophagectomy for esophageal cancer. We investigated the role of serum C-reactive protein (CRP) and drain amylase levels in the early detection of AL. This is a retrospective study of 193 patients who underwent a minimally invasive Ivor-Lewis procedure between January 2017 and October 2021. Mean CRP and median drain amylase levels between patients with and without AL were compared during the first five postoperative days (POD). ROC curves on POD 3, 4 and 5 were plotted to calculate cut-off values for CRP. In 30 of the 193 patients (16%), AL was diagnosed with a median time to diagnosis of 9 days. Mean CRP was significantly higher in patients with AL on POD 3, 4 and 5. Cut-off values of 59, 110 and 106 mg/L had a high sensitivity of 93%, 90% and 90% on POD 3, 4 and 5. No difference in median drain amylase levels was observed. CRP levels with a cut-off point of 110 mg/L on POD 4 do not improve earlier detection of AL, but have a high sensitivity for excluding AL. The value of drain amylase in the first 5 days after surgery is limited.</p

    Rapid reversal of human intestinal ischemia-reperfusion induced damage by shedding of injured enterocytes and reepithelialisation.

    Get PDF
    BACKGROUND: Intestinal ischemia-reperfusion (IR) is a phenomenon related to physiological conditions (e.g. exercise, stress) and to pathophysiological events (e.g. acute mesenteric ischemia, aortic surgery). Although intestinal IR has been studied extensively in animals, results remain inconclusive and data on human intestinal IR are scarce. Therefore, an experimental harmless model for human intestinal IR was developed, enabling us to clarify the sequelae of human intestinal IR for the first time. METHODS AND FINDINGS: In 30 patients undergoing pancreatico-duodenectomy we took advantage of the fact that in this procedure a variable length of jejunum is removed. Isolated jejunum (5 cm) was subjected to 30 minutes ischemia followed by reperfusion. Intestinal Fatty Acid Binding Protein (I-FABP) arteriovenous concentration differences across the bowel segment were measured before and after ischemia to assess epithelial cell damage. Tissue sections were collected after ischemia and at 25, 60 and 120 minutes reperfusion and stained with H&E, and for I-FABP and the apoptosis marker M30. Bonferroni's test was used to compare I-FABP differences. Mean (SEM) arteriovenous concentration gradients of I-FABP across the jejunum revealed rapidly developing epithelial cell damage. I-FABP release significantly increased from 290 (46) pg/ml before ischemia towards 3,997 (554) pg/ml immediately after ischemia (p<0.001) and declined gradually to 1,143 (237) pg/ml within 1 hour reperfusion (p<0.001). Directly after ischemia the intestinal epithelial lining was microscopically normal, while subepithelial spaces appeared at the villus tip. However, after 25 minutes reperfusion, enterocyte M30 immunostaining was observed at the villus tip accompanied by shedding of mature enterocytes into the lumen and loss of I-FABP staining. Interestingly, within 60 minutes reperfusion the epithelial barrier resealed, while debris of apoptotic, shedded epithelial cells was observed in the lumen. At the same time, M30 immunoreactivity was absent in intact epithelial lining. CONCLUSIONS: This is the first human study to clarify intestinal IR induced cell damage and repair and its direct consequences. It reveals a unique, endogenous clearing mechanism for injured enterocytes: rapid detachment of damaged apoptotic enterocytes into the lumen. This process is followed by repair of the epithelial continuity within an hour, resulting in a normal epithelial lining

    Macrophage-specific expression of mannose-binding lectin controls atherosclerosis in low-density lipoprotein receptor-deficient mice

    No full text
    With consideration of the central role of the innate immune system in atherogenesis and mannose-binding lectin (MBL) as an innate regulator of immunity, the role of MBL in experimental and human atherosclerosis was assessed. With the use of immunohistochemistry and polymerase chain reaction, deposition and gene expression of MBL-A and -C were assessed in murine atherosclerosis from mice deficient for the low-density lipoprotein receptor (LDLR(-/-)) after 10 or 18 weeks of high-fat feeding. MBL was present and was produced in 10-week-old lesions, whereas deposition and gene expression were minimal after 18 weeks of high-fat feeding and absent in healthy vasculature. Interestingly, deposition of MBL-A and -C differed: MBL-A predominantly localized in upper medial layers, whereas MBL-C was found in and around intimal macrophages. To further study the role of local MBL production by monocytic cells in atherosclerosis, LDLR(-/-) mice with MBL-A and -C(-/-) monocytic cells were construed by bone marrow transplantation. Mice carrying MBL-A and -C double deficient macrophages had increased (30%) atherosclerotic lesions compared with wild-type controls (P=0.015) after 10 weeks of high-fat diet. Subsequently, analysis of MBL deposition and gene expression in advanced human atherosclerotic lesions revealed the presence of MBL protein in ruptured but not stable atherosclerotic lesions. Putatively in agreement with murine data, no MBL gene expression could be detected in advanced human atherosclerotic lesions. These results are the first to show that MBL is abundantly present and locally produced during early atherogenesis. Local MBL expression, by myeloid cells, is shown to critically control development of atherosclerotic lesion

    Human Intestinal Ischemia-Reperfusion–Induced Inflammation Characterized : Experiences from a New Translational Model

    No full text
    Human intestinal ischemia-reperfusion (IR) is a frequent phenomenon carrying high morbidity and mortality. Although intestinal IR-induced inflammation has been studied extensively in animal models, human intestinal IR induced inflammatory responses remain to be characterized. Using a newly developed human intestinal IR model, we show that human small intestinal ischemia results in massive leakage of intracellular components from ischemically damaged cells, as indicated by increased arteriovenous concentration differences of intestinal fatty acid binding protein and soluble cytokeratin 18. IR-induced intestinal barrier integrity loss resulted in free exposure of the gut basal membrane (collagen IV staining) to intraluminal contents, which was accompanied by increased arteriovenous concentration differences of endotoxin. Western blot for complement activation product C3c and immunohistochemistry for activated C3 revealed complement activation after IR. In addition, intestinal IR resulted in enhanced tissue mRNA expression of IL-6, IL-8, and TNF-α, which was accompanied by IL-6 and IL-8 release into the circulation. Expression of intercellular adhesion molecule-1 was markedly increased during reperfusion, facilitating influx of neutrophils into IR-damaged villus tips. In conclusion, this study for the first time shows the sequelae of human intestinal IR-induced inflammation, which is characterized by complement activation, production and release of cytokines into the circulation, endothelial activation, and neutrophil influx into IR-damaged tissue

    Neutrophil recruitment.

    No full text
    <p>A) No increase of PMN was observed over the course of reperfusion in response to 30 minutes of ischemia. Detected by specific HNP1-3 staining (AEC, indicated by arrows) the number of PMN in reperfused jejunum did not increase in comparison to healthy tissue (p = 0.90). Original magnification 200x. Clearly the PMN concentrated around the cellular debris collecting in the safe intestinal lumen (right insert in <a href="http://www.plosone.org/article/info:doi/10.1371/journal.pone.0007045#pone-0007045-g004" target="_blank">Fig. 4A</a> indicated by arrow. Original magnification 200x). B) Tissue MPO, assessed by ELISA, did not increase substantially over the course of IR (p = 0.71).</p
    corecore