12 research outputs found

    Pre-clinical Evaluation of a Cyanine-Based SPECT Probe for Multimodal Tumor Necrosis Imaging

    Get PDF
    Purpose: Recently we showed that a number of carboxylated near-infrared fluorescent (NIRF) cyanine dyes possess strong necrosis avid properties in vitro as well as in different mouse models of spontaneous and therapy-induced tumor necrosis, indicating their potential use for cancer diagnostic- and prognostic purposes. In the previous study, the detection of the cyanines was achieved by whole body optical imaging, a technique that, due to the limited penetration of near-infrared light, is not suitable for investigations deeper than 1 cm within the human body. Therefore, in order to facilitate clinical translation, the purpose of the present study was to generate a necrosis avid cyanine-based NIRF probe that could also be used for single photon emission computed tomography (SPECT). For this, the necrosis avid NIRF cyanine HQ4 was radiolabeled with 111indium, via the chelate diethylene triamine pentaacetic acid (DTPA). Procedures: The necrosis avid properties of the radiotracer [111In]DTPA-HQ4 were examined in vitro and in vivo in different breast tumor models in mice using SPECT and optical imaging. Moreover, biodistribution studies were performed to examine the pharmacokinetics of the probe in vivo. Results: Using optical imaging and radioactivity measurements, in vitro, we showed selective accumulation of [111In]DTPA-HQ4 in dead cells. Using SPECT and in biodistribution studies, the necrosis avidity of the radiotracer was confirmed in a 4T1 mouse breast cancer model of spontaneous tumor necrosis and in a MCF-7 human breast cancer model of chemotherapy-induced tumor necrosis. Conclusions: The radiotracer [111In]DTPA-HQ4 possessed strong and selective necrosis avidity in vitro and in various mouse models of tumor necrosis in vivo, indicating its potential to be clinically applied for diagnostic purposes and to monitor anti-cancer treatment efficacy

    Membrane Activity of LL-37 Derived Antimicrobial Peptides against Enterococcus hirae: Superiority of SAAP-148 over OP-145

    No full text
    The development of antimicrobial agents against multidrug-resistant bacteria is an important medical challenge. Antimicrobial peptides (AMPs), human cathelicidin LL-37 and its derivative OP-145, possess a potent antimicrobial activity and were under consideration for clinical trials. In order to overcome some of the challenges to their therapeutic potential, a very promising AMP, SAAP-148 was designed. Here, we studied the mode of action of highly cationic SAAP-148 in comparison with OP-145 on membranes of Enterococcus hirae at both cellular and molecular levels using model membranes composed of major constituents of enterococcal membranes, that is, anionic phosphatidylglycerol (PG) and cardiolipin (CL). In all assays used, SAAP-148 was consistently more efficient than OP-145, but both peptides displayed pronounced time and concentration dependences in killing bacteria and performing at the membrane. At cellular level, Nile Red-staining of enterococcal membranes showed abnormalities and cell shrinkage, which is also reflected in depolarization and permeabilization of E. hirae membranes. At the molecular level, both peptides abolished the thermotropic phase transition and induced disruption of PG/CL. Interestingly, the membrane was disrupted before the peptides neutralized the negative surface charge of PG/CL. Our results demonstrate that SAAP-148, which kills bacteria at a significantly lower concentration than OP-145, shows stronger effects on membranes at the cellular and molecular levels

    Where Electrostatics Matter: Bacterial Surface Neutralization and Membrane Disruption by Antimicrobial Peptides SAAP-148 and OP-145

    No full text
    The need for alternative treatment of multi-drug-resistant bacteria led to the increased design of antimicrobial peptides (AMPs). AMPs exhibit a broad antimicrobial spectrum without a distinct preference for a specific species. Thus, their mechanism, disruption of fundamental barrier function by permeabilization of the bacterial cytoplasmic membrane is considered to be rather general and less likely related to antimicrobial resistance. Of all physico-chemical properties of AMPs, their positive charge seems to be crucial for their interaction with negatively charged bacterial membranes. Therefore, we elucidate the role of electrostatic interaction on bacterial surface neutralization and on membrane disruption potential of two potent antimicrobial peptides, namely, OP-145 and SAAP-148. Experiments were performed on Escherichia coli, a Gram-negative bacterium, and Enterococcus hirae, a Gram-positive bacterium, as well as on their model membranes. Zeta potential measurements demonstrated that both peptides neutralized the surface charge of E. coli immediately after their exposure, but not of E. hirae. Second, peptides neutralized all model membranes, but failed to efficiently disrupt model membranes mimicking Gram-negative bacteria. This was further confirmed by flow cytometry showing reduced membrane permeability for SAAP-148 and the lack of OP-145 to permeabilize the E. coli membrane. As neutralization of E. coli surface charges was achieved before the cells were killed, we conclude that electrostatic forces are more important for actions on the surface of Gram-negative bacteria than on their cytoplasmic membranes

    Effectiveness of slow-release systems in CD40 agonistic antibody immunotherapy of cancer

    No full text
    Slow-release delivery has great potential for specifically targeting immune-modulating agents into the tumor-draining area. In prior work we showed that local treatment of slowly delivered anti-CD40 antibody induced robust anti-tumor CD8+ T cell responses without systemic toxicity. We now report on the comparison of two slow-release delivery systems for their use in antibody-based immunotherapy of cancer. Anti-CD40 agonistic antibody delivered locally in mineral oil Montanide ISA 51 or in dextran-based microparticles activated tumor-specific T cell activation. Both slow-release formulations significantly decreased systemic side-effects compared to systemic administration of anti-CD40 antibody. However, dextran-based microparticles caused serious local inflammation associated with unwanted rapid outgrowth of tumors instead of the tumor clearance observed with delivery in Montanide. We therefore conclude that Montanide ISA 51 is to be preferred as a slow-release agent for CD40 agonist immunotherapy of cancer

    Potential factors contributing to the poor antimicrobial efficacy of SAAP-148 in a rat wound infection model

    No full text
    BACKGROUND: We investigated the efficacy of a synthetic antimicrobial peptide SAAP-148, which was shown to be effective against Methicillin-resistant Staphylococcus aureus (MRSA) on tape-stripped mice skin. Unexpectedly, SAAP-148 was not effective against MRSA in our pilot study using rats with excision wounds. Therefore, we investigated factors that might have contributed to the poor efficacy of SAAP-148. Subsequently, we optimised the protocol and assessed the efficacy of SAAP-148 in an adapted rat study. METHODS: We incubated 100 µL of SAAP-148 with 1 cm2 of a wound dressing for 1 h and determined the unabsorbed volume of peptide solution. Furthermore, 105 colony forming units (CFU)/mL MRSA were exposed to increasing dosages of SAAP-148 in 50% (v/v) human plasma, eschar- or skin extract or PBS. After 30 min incubation, the number of viable bacteria was determined. Next, ex vivo skin models were inoculated with MRSA for 1 h and exposed to SAAP-148. Finally, excision wounds on the back of rats were inoculated with 107 CFU MRSA overnight and treated with SAAP-148 for 4 h or 24 h. Subsequently, the number of viable bacteria was determined. RESULTS: Contrary to Cuticell, Parafilm and Tegaderm film,  20-fold higher dosages of SAAP-148 were required to achieve a 2-log reduction (LR) of MRSA versus SAAP-148 in PBS. Exposure of ex vivo models to SAAP-148 for 24 h resulted in a 4-fold lower LR than a 1 h or 4 h exposure period. Additionally, SAAP-148 caused a 1.3-fold lower mean LR at a load of 107 CFU compared to 105 CFU MRSA. Moreover, exposure of ex vivo excision wound models to SAAP-148 resulted in a 1.5-fold lower LR than for tape-stripped skin. Finally, SAAP-148 failed to reduce the bacterial counts in an adapted rat study. CONCLUSIONS: Several factors, such as absorption of SAAP-148 by wound dressings, components within wound exudates, re-colonisation during the exposure of SAAP-148, and a high bacterial load may contribute to the poor antimicrobial effect of SAAP-148 against MRSA in the rat model

    CalcAMP: A New Machine Learning Model for the Accurate Prediction of Antimicrobial Activity of Peptides

    Get PDF
    To combat infection by microorganisms host organisms possess a primary arsenal via the innate immune system. Among them are defense peptides with the ability to target a wide range of pathogenic organisms, including bacteria, viruses, parasites, and fungi. Here, we present the development of a novel machine learning model capable of predicting the activity of antimicrobial peptides (AMPs), CalcAMP. AMPs, in particular short ones (<35 amino acids), can become an effective solution to face the multi-drug resistance issue arising worldwide. Whereas finding potent AMPs through classical wet-lab techniques is still a long and expensive process, a machine learning model can be useful to help researchers to rapidly identify whether peptides present potential or not. Our prediction model is based on a new data set constructed from the available public data on AMPs and experimental antimicrobial activities. CalcAMP can predict activity against both Gram-positive and Gram-negative bacteria. Different features either concerning general physicochemical properties or sequence composition have been assessed to retrieve higher prediction accuracy. CalcAMP can be used as an promising prediction asset to identify short AMPs among given peptide sequences

    Thrombocidin-1-derived antimicrobial peptide TC19 combats superficial multi-drug resistant bacterial wound infections

    Get PDF
    Antimicrobial peptides are considered promising candidates for the development of novel antimicrobial agents to combat infections by multi-drug-resistant (MDR) bacteria. Here, we describe the identification and characterization of the synthetic peptide TC19, derived from the human thrombocidin-1-derived peptide L3. Biophysical experiments into the interaction between TC19 and mimics of human and bacterial plasma membranes demonstrated that the peptide is highly selective for bacterial membranes. In agreement, TC19 combined low cytotoxicity towards human fibroblasts with efficient and rapid killing in human plasma of MDR strains of several bacterial species of the ESKAPE panel. In addition, TC19 induced minor resistance in vitro, neutralized pro-inflammatory activity of bacterial cell envelope components while displaying slight chemotactic activity for human neutrophils. Importantly, topical application of TC19-containing hypromellose gel significantly reduced numbers of viable methicillin-resistant Staphylococcus aureus (MRSA) and MDR Acinetobacter baumannii in a superficial wound infection in mice. Together, TC19 is an attractive candidate for further development as a novel agent against (MDR) bacterial skin wound infections

    Physical and Functional Characterization of PLGA Nanoparticles Containing the Antimicrobial Peptide SAAP-148

    No full text
    Synthetic antimicrobial and antibiofilm peptide (SAAP-148) commits significant antimicrobial activities against antimicrobial resistant (AMR) planktonic bacteria and biofilms. However, SAAP-148 is limited by its low selectivity index, i.e., ratio between cytotoxicity and antimicrobial activity, as well as its bioavailability at infection sites. We hypothesized that formulation of SAAP-148 in PLGA nanoparticles (SAAP-148 NPs) improves the selectivity index due to the sustained local release of the peptide. The aim of this study was to investigate the physical and functional characteristics of SAAP-148 NPs and to compare the selectivity index of the formulated peptide with that of the peptide in solution. SAAP-148 NPs displayed favorable physiochemical properties [size = 94.1 &plusmn; 23 nm, polydispersity index (PDI) = 0.08 &plusmn; 0.1, surface charge = 1.65 &plusmn; 0.1 mV, and encapsulation efficiency (EE) = 86.7 &plusmn; 0.3%] and sustained release of peptide for up to 21 days in PBS at 37 &deg;C. The antibacterial and cytotoxicity studies showed that the selectivity index for SAAP-148 NPs was drastically increased, by 10-fold, regarding AMR Staphylococcus aureus and 20-fold regarding AMR Acinetobacter baumannii after 4 h. Interestingly, the antibiofilm activity of SAAP-148 NPs against AMR S. aureus and A. baumannii gradually increased overtime, suggesting a dose&ndash;effect relationship based on the peptide&rsquo;s in vitro release profile. Using 3D human skin equivalents (HSEs), dual drug SAAP-148 NPs and the novel antibiotic halicin NPs provided a stronger antibacterial response against planktonic and cell-associated bacteria than SAAP-148 NPs but not halicin NPs after 24 h. Confocal laser scanning microscopy revealed the presence of SAAP-148 NPs on the top layers of the skin models in close proximity to AMR S. aureus at 24 h. Overall, SAAP-148 NPs present a promising yet challenging approach for further development as treatment against bacterial infections

    The antimicrobial peptide SAAP-148 combats drug-resistant bacteria and biofilms

    No full text
    Development of novel antimicrobial agents is a top priority in the fight against multidrug-resistant (MDR) and persistent bacteria. We developed a panel of synthetic antimicrobial and antibiofilm peptides (SAAPs) with enhanced antimicrobial activities compared to the parent peptide, human antimicrobial peptide LL-37. Our lead peptide SAAP-148 was more efficient in killing bacteria under physiological conditions in vitro than many known preclinical-and clinical-phase antimicrobial peptides. SAAP-148 killed MDR pathogens without inducing resistance, prevented biofilm formation, and eliminated established biofilms and persister cells. A single 4-hour treatment with hypromellose ointment containing SAAP-148 completely eradicated acute and established, biofilm-associated infections with methicillin-resistant Staphylococcus aureus and MDR Acinetobacter baumannii from wounded ex vivo human skin and murine skin in vivo. Together, these data demonstrate that SAAP-148 is a promising drug candidate in the battle against antibiotic-resistant bacteria that pose a great threat to human healt
    corecore