69 research outputs found

    Elevation in Body Temperature to Fever Range Enhances and Prolongs Subsequent Responsiveness of Macrophages to Endotoxin Challenge

    Get PDF
    Macrophages are often considered the sentries in innate immunity, sounding early immunological alarms, a function which speeds the response to infection. Compared to the large volume of studies on regulation of macrophage function by pathogens or cytokines, relatively little attention has been devoted to the role of physical parameters such as temperature. Given that temperature is elevated during fever, a long-recognized cardinal feature of inflammation, it is possible that macrophage function is responsive to thermal signals. To explore this idea, we used LPS to model an aseptic endotoxin-induced inflammatory response in BALB/c mice and found that raising mouse body temperature by mild external heat treatment significantly enhances subsequent LPS-induced release of TNF-α into the peritoneal fluid. It also reprograms macrophages, resulting in sustained subsequent responsiveness to LPS, i.e., this treatment reduces “endotoxin tolerance” in vitro and in vivo. At the molecular level, elevating body temperature of mice results in a increase in LPS-induced downstream signaling including enhanced phosphorylation of IKK and IκB, NF-κB nuclear translocation and binding to the TNF-α promoter in macrophages upon secondary stimulation. Mild heat treatment also induces expression of HSP70 and use of HSP70 inhibitors (KNK437 or Pifithrin-µ) largely abrogates the ability of the thermal treatment to enhance TNF-α, suggesting that the induction of HSP70 is important for mediation of thermal effects on macrophage function. Collectively, these results support the idea that there has been integration between the evolution of body temperature regulation and macrophage function that could help to explain the known survival benefits of fever in organisms following infection

    Cardiac Tissue Engineering: Implications for Pediatric Heart Surgery

    Get PDF
    Children with severe congenital malformations, such as single-ventricle anomalies, have a daunting prognosis. Heart transplantation would be a therapeutic option but is restricted due to a lack of suitable donor organs and, even in case of successful heart transplantation, lifelong immune suppression would frequently be associated with a number of serious side effects. As an alternative to heart transplantation and classical cardiac reconstructive surgery, tissue-engineered myocardium might become available to augment hypomorphic hearts and/or provide new muscle material for complex myocardial reconstruction. These potential applications of tissue engineered myocardium will, however, impose major challenges to cardiac tissue engineers as well as heart surgeons. This review will provide an overview of available cardiac tissue-engineering technologies, discuss limitations, and speculate on a potential application of tissue-engineered heart muscle in pediatric heart surgery

    Computation of power spectral densities and correlations using digital FFT techniques

    No full text
    December 1975.CER75-76REA-JAP13.Includes bibliographical references.Sponsored by National Science Foundation, Grant ENG72-04261-A01

    Wind engineering study of Renaissance Center, Detroit: data supplement

    Get PDF
    For John Portman and Associates.December 1974.CER74-75JAP-JEC5a

    PB-qPCR generated microbial profiles of acute and post-treatment vaginal swabs of patients with histories of recurrent BV.

    No full text
    <p>Data is also provided as Table; these and the conversions to relative titers as described [71]. Patient 1 (P1) was sampled at 3 separate acute BV (aBV) episodes; 3a and 3b are samples of the 3<sup>rd</sup> episode taken 5 days apart. P1 and P2 recurred during the study; P3 and P4 did not. P5 responded poorly and was ultimately diagnosed with BV at an intermediate Nugent score, 4 (P5-iBV). uc  =  uncultured.</p
    corecore