36 research outputs found

    Olig2-Regulated Lineage-Restricted Pathway Controls Replication Competence in Neural Stem Cells and Malignant Glioma

    Get PDF
    Recent studies have identified stem cells in brain cancer. However, their relationship to normal CNS progenitors, including dependence on common lineage-restricted pathways, is unclear. We observe expression of the CNS-restricted transcription factor, OLIG2, in human glioma stem and progenitor cells reminiscent of type C transit-amplifying cells in germinal zones of the adult brain. Olig2 function is required for proliferation of neural progenitors and for glioma formation in a genetically relevant murine model. Moreover, we show p21^(WAF1/CIP1), a tumor suppressor and inhibitor of stem cell proliferation, is directly repressed by OLIG2 in neural progenitors and gliomas. Our findings identify an Olig2-regulated lineage-restricted pathway critical for proliferation of normal and tumorigenic CNS stem cells

    Analysis of Tumor Metabolism Reveals Mitochondrial Glucose Oxidation in Genetically Diverse Human Glioblastomas in the Mouse Brain In Vivo

    Get PDF
    SummaryDysregulated metabolism is a hallmark of cancer cell lines, but little is known about the fate of glucose and other nutrients in tumors growing in their native microenvironment. To study tumor metabolism in vivo, we used an orthotopic mouse model of primary human glioblastoma (GBM). We infused 13C-labeled nutrients into mice bearing three independent GBM lines, each with a distinct set of mutations. All three lines displayed glycolysis, as expected for aggressive tumors. They also displayed unexpected metabolic complexity, oxidizing glucose via pyruvate dehydrogenase and the citric acid cycle, and using glucose to supply anaplerosis and other biosynthetic activities. Comparing the tumors to surrounding brain revealed obvious metabolic differences, notably the accumulation of a large glutamine pool within the tumors. Many of these same activities were conserved in cells cultured ex vivo from the tumors. Thus GBM cells utilize mitochondrial glucose oxidation during aggressive tumor growth in vivo

    Endovascular strategy or open repair for ruptured abdominal aortic aneurysm: one-year outcomes from the IMPROVE randomized trial.

    Get PDF
    AIMS: To report the longer term outcomes following either a strategy of endovascular repair first or open repair of ruptured abdominal aortic aneurysm, which are necessary for both patient and clinical decision-making. METHODS AND RESULTS: This pragmatic multicentre (29 UK and 1 Canada) trial randomized 613 patients with a clinical diagnosis of ruptured aneurysm; 316 to an endovascular first strategy (if aortic morphology is suitable, open repair if not) and 297 to open repair. The principal 1-year outcome was mortality; secondary outcomes were re-interventions, hospital discharge, health-related quality-of-life (QoL) (EQ-5D), costs, Quality-Adjusted-Life-Years (QALYs), and cost-effectiveness [incremental net benefit (INB)]. At 1 year, all-cause mortality was 41.1% for the endovascular strategy group and 45.1% for the open repair group, odds ratio 0.85 [95% confidence interval (CI) 0.62, 1.17], P = 0.325, with similar re-intervention rates in each group. The endovascular strategy group and open repair groups had average total hospital stays of 17 and 26 days, respectively, P < 0.001. Patients surviving rupture had higher average EQ-5D utility scores in the endovascular strategy vs. open repair groups, mean differences 0.087 (95% CI 0.017, 0.158), 0.068 (95% CI -0.004, 0.140) at 3 and 12 months, respectively. There were indications that QALYs were higher and costs lower for the endovascular first strategy, combining to give an INB of £3877 (95% CI £253, £7408) or €4356 (95% CI €284, €8323). CONCLUSION: An endovascular first strategy for management of ruptured aneurysms does not offer a survival benefit over 1 year but offers patients faster discharge with better QoL and is cost-effective. CLINICAL TRIAL REGISTRATION: ISRCTN 48334791

    The effect of aortic morphology on peri-operative mortality of ruptured abdominal aortic aneurysm

    Get PDF
    Aims To investigate whether aneurysm shape and extent, which indicate whether a patient with ruptured abdominal aortic aneurysm (rAAA) is eligible for endovascular repair (EVAR), influence the outcome of both EVAR and open surgical repair. Methods and results The influence of six morphological parameters (maximum aortic diameter, aneurysm neck diameter, length and conicality, proximal neck angle, and maximum common iliac diameter) on mortality and reinterventions within 30 days was investigated in rAAA patients randomized before morphological assessment in the Immediate Management of the Patient with Rupture: Open Versus Endovascular strategies (IMPROVE) trial. Patients with a proven diagnosis of rAAA, who underwent repair and had their admission computerized tomography scan submitted to the core laboratory, were included. Among 458 patients (364 men, mean age 76 years), who had either EVAR (n = 177) or open repair (n = 281) started, there were 155 deaths and 88 re-interventions within 30 days of randomization analysed according to a pre-specified plan. The mean maximum aortic diameter was 8.6 cm. There were no substantial correlations between the six morphological variables. Aneurysm neck length was shorter in those undergoing open repair (vs. EVAR). Aneurysm neck length (mean 23.3, SD 16.1 mm) was inversely associated with mortality for open repair and overall: adjusted OR 0.72 (95% CI 0.57, 0.92) for each 16 mm (SD) increase in length. There were no convincing associations of morphological parameters with reinterventions. Conclusion Short aneurysm necks adversely influence mortality after open repair of rAAA and preclude conventional EVAR. This may help explain why observational studies, but not randomized trials, have shown an early survival benefit for EVAR. Clinical trial registration: ISRCTN 48334791

    Identification of a PTEN-regulated STAT3 brain tumor suppressor pathway

    No full text
    Activation of the transcription factor STAT3 is thought to potently promote oncogenesis in a variety of tissues, leading to intense efforts to develop STAT3 inhibitors for many tumors, including the highly malignant brain tumor glioblastoma. However, the function of STAT3 in glioblastoma pathogenesis has remained unknown. Here, we report that STAT3 plays a pro-oncogenic or tumor-suppressive role depending on the mutational profile of the tumor. Deficiency of the tumor suppressor PTEN triggers a cascade that inhibits STAT3 signaling in murine astrocytes and human glioblastoma tumors. Specifically, we forge a direct link between the PTEN–Akt–FOXO axis and the leukemia inhibitory factor receptor β (LIFRβ)–STAT3 signaling pathway. Accordingly, PTEN knockdown induces efficient malignant transformation of astrocytes upon knockout of the STAT3 gene. Remarkably, in contrast to the tumor-suppressive function of STAT3 in the PTEN pathway, STAT3 forms a complex with the oncoprotein epidermal growth factor receptor type III variant (EGFRvIII) in the nucleus and thereby mediates EGFRvIII-induced glial transformation. These findings indicate that STAT3 plays opposing roles in glial transformation depending on the genetic background of the tumor, providing the rationale for tailored therapeutic intervention in glioblastoma

    Bcl2L12 inhibits post-mitochondrial apoptosis signaling in glioblastoma

    No full text
    Glioblastoma (GBM) is an astrocytic brain tumor characterized by an aggressive clinical course and intense resistance to all therapeutic modalities. Here, we report the identification and functional characterization of Bcl2L12 (Bcl2-like-12) that is robustly expressed in nearly all human primary GBMs examined. Enforced Bcl2L12 expression confers marked apoptosis resistance in primary cortical astrocytes, and, conversely, its RNA interference (RNAi)-mediated knockdown sensitizes human glioma cell lines toward apoptosis in vitro and impairs tumor growth with increased intratumoral apoptosis in vivo. Mechanistically, Bcl2L12 expression does not affect cytochrome c release or apoptosome-driven caspase-9 activation, but instead inhibits post-mitochondrial apoptosis signaling at the level of effector caspase activation. One of Bcl2L12’s mechanisms of action stems from its ability to interact with and neutralize caspase-7. Notably, while enforced Bcl2L12 expression inhibits apoptosis, it also engenders a pronecrotic state, which mirrors the cellular phenotype elicited by genetic or pharmacologic inhibition of post-mitochondrial apoptosis molecules. Thus, Bcl2L12 contributes to the classical tumor biological features of GBM such as intense apoptosis resistance and florid necrosis, and may provide a target for enhanced therapeutic responsiveness of this lethal cancer

    Leukocyte Common Antigen-Related Phosphatase Is a Functional Receptor for Chondroitin Sulfate Proteoglycan Axon Growth Inhibitors

    No full text
    Chondroitin sulfate proteoglycans (CSPGs) are a family of extracellular matrix molecules with various functions in regulating tissue morphogenesis, cell division, and axon guidance. A number of CSPGs are highly upregulated by reactive glial scar tissues after injuries and form a strong barrier for axonal regeneration in the adult vertebrate CNS. Although CSPGs may negatively regulate axonal growth via binding and altering activity of other growth-regulating factors, the molecular mechanisms by which CSPGs restrict axonal elongation are not well understood. Here, we identified a novel receptor mechanism whereby CSPGs inhibit axonal growth via interactions with neuronal transmembrane leukocyte common antigen-related phosphatase (LAR). CSPGs bind LAR with high affinity in transfected COS-7 cells and coimmunoprecipitate with LAR expressed in various tissues including the brain and spinal cord. CSPG stimulation enhances activity of LAR phosphatase in vitro. Deletion of LAR in knock-out mice or blockade of LAR with sequence-selective peptides significantly overcomes neurite growth restrictions of CSPGs in neuronal cultures. Intracellularly, CSPG–LAR interaction mediates axonal growth inhibition of neurons partially via inactivating Akt and activating RhoA signals. Systemic treatments with LAR-targeting peptides in mice with thoracic spinal cord transection injuries induce significant axon growth of descending serotonergic fibers in the vicinity of the lesion and beyond in the caudal spinal cord and promote locomotor functional recovery. Identification of LAR as a novel CSPG functional receptor provides a therapeutic basis for enhancing axonal regeneration and functional recovery after CNS injuries in adult mammals.Paralyzed Veterans of America (Grant 2584)Paralyzed Veterans of America (Grant 2516)National Institutes of Health (U.S.) (Grant 1R21 NS066114-01A1
    corecore