3,111 research outputs found
Neurotransmitter release: Variations on a theme
AbstractSimilarities between the ways that synaptic vesicles and large dense-core vesicles release their contents have been emphasized, but recent studies have revealed important mechanistic differences between these two exocytotic processes
Recommended from our members
alpha-Synuclein promotes dilation of the exocytotic fusion pore
The protein α-synuclein has a central role in the pathogenesis of Parkinson's disease. Like that of other proteins that accumulate in neurodegenerative disease, however, the function of α-synuclein remains unknown. Localization to the nerve terminal suggests a role in neurotransmitter release, and overexpression inhibits regulated exocytosis, but previous work has failed to identify a clear physiological defect in mice lacking all three synuclein isoforms. Using adrenal chromaffin cells and neurons, we now find that both overexpressed and endogenous synuclein accelerate the kinetics of individual exocytotic events, promoting cargo discharge and reducing pore closure ('kiss-and-run'). Thus, synuclein exerts dose-dependent effects on dilation of the exocytotic fusion pore. Remarkably, mutations that cause Parkinson's disease abrogate this property of α-synuclein without impairing its ability to inhibit exocytosis when overexpressed, indicating a selective defect in normal function
Finite-Volume Scaling of the Quenched Chiral Condensate
In the large-volume limit with the
mass-dependent chiral condensate is predicted to satisfy exact finite-volume
scaling laws that fall into three major universality classes. We test these
analytical predictions with staggered fermions and overlap fermions in gauge
field sectors of fixed topological charge .Comment: Talk at Lattice99(topology), 3 page
A study of chiral symmetry in quenched QCD using the Overlap-Dirac operator
We compute fermionic observables relevant to the study of chiral symmetry in
quenched QCD using the Overlap-Dirac operator for a wide range of the fermion
mass. We use analytical results to disentangle the contribution from exact zero
modes and simplify our numerical computations. Details concerning the numerical
implementation of the Overlap-Dirac operator are presented.Comment: 24 pages revtex with 5 postscript figures included by eps
Domain Wall Fermions with Exact Chiral Symmetry
We show how the standard domain wall action can be simply modified to allow
arbitrarily exact chiral symmetry at finite fifth dimensional extent. We note
that the method can be used for both quenched and dynamical calculations. We
test the method using smooth and thermalized gauge field configurations. We
also make comparisons of the performance (cost) of the domain wall operator for
spectroscopy compared to other methods such as the overlap-Dirac operator and
find both methods are comparable in cost.Comment: revtex, 37 pages, 11 color postscript figure
Status and Future Perspectives for Lattice Gauge Theory Calculations to the Exascale and Beyond
In this and a set of companion whitepapers, the USQCD Collaboration lays out
a program of science and computing for lattice gauge theory. These whitepapers
describe how calculation using lattice QCD (and other gauge theories) can aid
the interpretation of ongoing and upcoming experiments in particle and nuclear
physics, as well as inspire new ones.Comment: 44 pages. 1 of USQCD whitepapers
First Lattice Study of the - Transition Form Factors
Experiments at Jefferson Laboratory, MIT-Bates, LEGS, Mainz, Bonn, GRAAL, and
Spring-8 offer new opportunities to understand in detail how nucleon resonance
() properties emerge from the nonperturbative aspects of QCD. Preliminary
data from CLAS collaboration, which cover a large range of photon virtuality
show interesting behavior with respect to dependence: in the region
, both the transverse amplitude, , and the
longitudinal amplitude, , decrease rapidly. In this work, we
attempt to use first-principles lattice QCD (for the first time) to provide a
model-independent study of the Roper-nucleon transition form factor.Comment: 4 pages, 2 figures, double colum
Are Topological Charge Fluctuations in QCD Instanton Dominated?
We consider a recent proposal by Horv\'ath {\em et al.} to address the
question whether topological charge fluctuations in QCD are instanton dominated
via the response of fermions using lattice fermions with exact chiral symmetry,
the overlap fermions. Considering several volumes and lattice spacings we find
strong evidence for chirality of a finite density of low-lying eigenvectors of
the overlap-Dirac operator in the regions where these modes are peaked. This
result suggests instanton dominance of topological charge fluctuations in
quenched QCD.Comment: LaTeX, 15 pages, 8 postscript figures, minor improvements, version to
appear in PR
- âŠ