356 research outputs found

    A new equilibrium torus solution and GRMHD initial conditions

    Full text link
    General relativistic magnetohydrodynamic (GRMHD) simulations are providing influential models for black hole spin measurements, gamma ray bursts, and supermassive black hole feedback. Many of these simulations use the same initial condition: a rotating torus of fluid in hydrostatic equilibrium. A persistent concern is that simulation results sometimes depend on arbitrary features of the initial torus. For example, the Bernoulli parameter (which is related to outflows), appears to be controlled by the Bernoulli parameter of the initial torus. In this paper, we give a new equilibrium torus solution and describe two applications for the future. First, it can be used as a more physical initial condition for GRMHD simulations than earlier torus solutions. Second, it can be used in conjunction with earlier torus solutions to isolate the simulation results that depend on initial conditions. We assume axisymmetry, an ideal gas equation of state, constant entropy, and ignore self-gravity. We fix an angular momentum distribution and solve the relativistic Euler equations in the Kerr metric. The Bernoulli parameter, rotation rate, and geometrical thickness of the torus can be adjusted independently. Our torus tends to be more bound and have a larger radial extent than earlier torus solutions. While this paper was in preparation, several GRMHD simulations appeared based on our equilibrium torus. We believe it will continue to provide a more realistic starting point for future simulations.Comment: 8 pages, 4 figures, A&A accepte

    Why States Save: Using Evidence to Inform How Large Rainy Day Funds Should Grow

    Get PDF
    As revenue and spending pressures shift along with the booms and busts of the economy, states stand to benefit from the additional flexibility provided by robust rainy day funds to smooth over unexpected bumps in the road. But absent a clear purpose for saving, some states also find it extremely difficult to set a meaningful savings target, which can confound their efforts to manage the budgetary ups and downs of economic activity.This report examines how state policymakers should design their funds to help inform an optimal savings target. It analyzes existing guidelines -- set in statutory or constitutional language -- around the management of rainy day funds and offers key questions to consider while crafting such guidelines

    Characterizing the Communication Requirements of GNN Accelerators: A Model-Based Approach

    Get PDF
    Relational data present in real world graph representations demands for tools capable to study it accurately. In this regard Graph Neural Network (GNN) is a powerful tool, wherein various models for it have also been developed over the past decade. Recently, there has been a significant push towards creating accelerators that speed up the inference and training process of GNNs. These accelerators, however, do not delve into the impact of their dataflows on the overall data movement and, hence, on the communication requirements. In this paper, we formulate analytical models that capture the amount of data movement in the most recent GNN accelerator frameworks. Specifically, the proposed models capture the dataflows and hardware setup of these accelerator designs and expose their scalability characteristics for a set of hardware, GNN model and input graph parameters. Additionally, the proposed approach provides means for the comparative analysis of the vastly different GNN accelerators.Comment: ISCAS 202

    Contextual Search in the Presence of Irrational Agents

    Full text link
    We study contextual search, a generalization of binary search in higher dimensions, which captures settings such as feature-based dynamic pricing. Standard game-theoretic formulations of this problem assume that agents act in accordance with a specific behavioral model. In practice, however, some agents may not prescribe to the dominant behavioral model or may act in ways that are seemingly arbitrarily irrational. Existing algorithms heavily depend on the behavioral model being (approximately) accurate for all agents and have poor performance in the presence of even a few such arbitrarily irrational agents. We initiate the study of contextual search when some of the agents can behave in ways inconsistent with the underlying behavioral model. In particular, we provide two algorithms, one built on robustifying multidimensional binary search methods and one on translating the setting to a proxy setting appropriate for gradient descent. Our techniques draw inspiration from learning theory, game theory, high-dimensional geometry, and convex analysis.Comment: Compared to the first version titled "Corrupted Multidimensional Binary Search: Learning in the Presence of Irrational Agents", this version provides a broader scope of behavioral models of irrationality, specifies how the results apply to different loss functions, and discusses the power and limitations of additional algorithmic approache
    • …
    corecore