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Abstract—Relational data present in real world graph repre-
sentations demands for tools capable to study it accurately. In
this regard Graph Neural Network (GNN) is a powerful tool,
wherein various models for it have also been developed over
the past decade. Recently, there has been a significant push
towards creating accelerators that speed up the inference and
training process of GNNs. These accelerators, however, do not
delve into the impact of their dataflows on the overall data
movement and, hence, on the communication requirements. In
this paper, we formulate analytical models that capture the
amount of data movement in the most recent GNN accelera-
tor frameworks. Specifically, the proposed models capture the
dataflows and hardware setup of these accelerator designs and
expose their scalability characteristics for a set of hardware, GNN
model and input graph parameters. Additionally, the proposed
approach provides means for the comparative analysis of the
vastly different GNN accelerators.

Index Terms—GNN Accelerators, Parametric models

I. INTRODUCTION

Representation of data-sets as graph-based data structures,
given the opportunities they provision to understand complex
relationships embedded in them, has become increasingly
popular [1]-[5]. These graph representations can range from
very small (chemistry) to extremely huge (recommendation
systems) graphs [6], [7]. Subsequently, to learn and infer from
these graph representations, the seminal work by Scarselli
et al. [8] in 2009 introduced the notion of Graph Neural
Networks (GNNs). While multiple GNN models have been
developed over the past decade [9]-[135], it is only recently
that accelerators for speeding up the training and inference of
GNNs have gained attention [|16[—[22]].

The area of GNN acceleration, however, is still in its
infancy and the handful of accelerators that exist cover a
wide portion of the design space, but only with few sparse
points [5]]. Moreover, as shown in Table El, these accelerators
support a broad variety of GNN algorithm variants. While the
accelerator designs verify their performance through metrics
such as throughput and overall energy consumption, an explicit
study on the data movement within the accelerators is absent.
Note that, the data movement dictates the requirements cast on
the underlying on-chip interconnect, which has a large impact
on the latency and energy consumed by the accelerator. In
fact, an important aspect of current GNN accelerator designs
is to minimize data movement in order to be faster, more
scalable, and more energy efficient. Hence, there is an interest
on studying the effect of the dataflows and hardware design
of the accelerators on the scalability trends of their underlying
interconnect fabric [23]]. This will also provision important
insights which will help guide future GNN accelerator designs.

TABLE I: Selection of GNN accelerators in the literature.

Accelerators Algorithms Supported |
GCN [9], GraphSage-Max [14], GatedGCN [11],

EnGN [16] GRN [[6], R-GCN [15]

HyGCN [17] GCN, GraphSage-Mean [14], GIN [24], DiffPool [12] |

Auten ef al. [19] | GCN, GAT [13], PGNN [19]

AWB-GCN [ 18] GCN

GRIP [20] GCN, GraphSage-Max, GIN, GatedGCN

In this context, this paper makes the following contributions:

o It presents analytical models that describe the impact of

the dataflows and hardware design of GNN accelerators

on the overall data movement. The models are based on

the accurate descriptions of the accelerator in question. To

the best of our knowledge, this is the first work providing

such analytical models, which will help in performing

scalability analyses, comparing between different accel-

erator designs, and making more informed decisions with
regards to future GNN accelerators.

o It evaluates two distinct state-of-the-art GNN accelera-
tors, i.e., EnGN [16] and HyGCN [17], using the pro-
posed models. This opens the door to the development
of similar analytical models for other accelerators.

We provide background on GNNs in Sec. [[Il describe the

models in Sec. [[TI] discuss the scaling results in Sec. [[V] and
conclude the paper in Sec. [V]

II. GNN ACCELERATORS: BACKGROUND

GNN accelerators are application-specific integrated circuits
that aim to process one or multiple GNN variants (see Table
[[) in a timely and energy efficient manner. The main challenge
in GNN accelerator design is the alternation of phases with
either dense or extremely sparse computation. The sparsity
is driven by the graph connectivity or the graph adjacency
matrix [16]-[18]. On the other hand, phases of dense compu-
tations are usually due to the dense nature of the operations
that are applied to the nodes and edges in parallel [16]-
[18]. Additionally, GNNs process input graphs that might
have billions of nodes and edges, with uneven connectivity.
Such characteristics lead to workload profiles that differ from
conventional neural networks (NNs), besides being inherently
imbalanced [[18)]].

Consequently, multiple works [16]-[22] propose accelera-
tors that speedup the inference/learning process with various
specific architectural techniques. To illustrate the fundamental
principles, Fig. [T] represents a generic architecture of a GNN
accelerator with its corresponding inputs and outputs. Con-
cretely, the acceleration engine takes as input a graph data
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structure and performs some initial pre-processing, such as
tiling/graph partitioning [16]. This is then fed to the processing
engine, which depending on its architecture and the predefined
dataflow, processes the incoming graph partitions to yield
an output. This output is generally a vector of features (i.e.
predictions) for either a node, an edge, or the entire graph.
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Fig. 1: Generic schematic diagram of a GNN accelerator.

The GNN inference process is generally divided into two
computation stages, namely, aggregation and combination [J5].
First, the data from nodes or edges is loaded from the
memory hierarchy to the Processing Elements (PEs). In the
aggregation stage, the node and/or edge features are added
to that of their neighbours following the adjacency matrix,
resulting into movement of data across PEs. Subsequently, in
the combination stage, the aggregated features are transformed
through a set of typical NN operations such as matrix-
vector multiplications and a non-linear activation function
(e.g., ReLU or tanh). Finally, after multiple recursions of the
aforesaid stages, a readout of the desired features is performed
via another NN or by just a linear/non-linear transformation.
Training follows a similar process [5].

Given their distinct architectures, in this work we focus on
two state-of-the-art GNN acceleration engines, i.e., EnGN [/16]]
and HyGCN [17]. Figs.[2fa) and [2b) illustrate their hardware
architecture, which implement vastly differing methods for,
among others, the graph partitioning and the reuse of vertex
features and intermediate results. These design decisions,
along with the specific dataflow they implement, impact the
characteristics of data movement. Hence, we next describe
analytical models of data movement for processing a single
tile, that can help understand these characteristics.
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Fig. 2: Schematic diagram of the analyzed GNN accelerators.

III. ANALYTICAL MODELS FOR DATA MOVEMENT

In this section, we describe the process towards obtaining
the parametric models that characterize data movement in
GNN accelerators. Table [lI| lists the employed notation. In
essence, we consider different input graph parameters, such

as the number of nodes K and edges P in a tile, and differ-
ent hardware parameters, such as the amount of differently-
organized PEs M, M’ M,, M. and memory bandwidth B
[bits/iteration], to breakdown the necessary data movement in
a given accelerator based on its defined dataflow.

The models determine the amount of data movement, this is,
the total number of bits that must be moved between different
memory hierarchy levels; and the number of iterations, this is,
the number of steps required to move all that data due to PE
or memory bandwidth constraints. High data movement will
likely lead to high energy consumption, while many iterations
may be an indicator of high latency. The hierarchy levels are
also specified as they have an obvious impact on latency and
energy. For instance, accessing a memory bank (L2) is ~6x
more expensive than accessing a register file (L1) [25].

The proposed models are based on the analysis of the thor-
ough architectural descriptions and walkthrough examples of
EnGN [16] and HyGCN [[17]]. Validation of the data movement
models is difficult as the authors of both accelerators provide
metrics normalized to the CPU or GPU implementations
mostly, and do not explicitly study data movement. Moreover,
their simulation tools are in-house and not open source.

TABLE II: Summary of notation.

Input graph parameters Architecture parameters
N | Size of input feature vector o Bit precision
T | Size of output feature vector B L2 memory bandwidth
K | Number of vertices in a tile [[ MXM’ EnGN PE array size
L Number of high-degree M, HyGCN aggregation and
vertices in a tile M, combination PEs
. . . T HyGCN systolic array reuse
P Number of edges in a tile P H};/GCN eydges after ledlng

Table [[II] lists the amount of data movement and number of
iterations in the different stages of EnGN. By default, this
accelerator employs a single 128 x 16 PE array alongside
multiple levels of memory to process both the aggregation and
combination stages sequentially. First, a control engine deter-
mines how the input graph is streamed onto the processing
engine. Vertices, both from L2 and a cache storing highly-
connected vertices, start being loaded as stated in loadvertL2
and loadvertcache respectively. We consider limitations in
memory bandwidth B, and row PE array size M. Next, for
the aggregation stage, a ring-edge-reduce (RER) whereby PEs
send their outputs following a physical ring is proposed [16].
RER generates the data movement specified in aggregate due
to its ring nature. After this, EnGN loads the weights for
the combination stage, loadweights, we take into account the
required amount of weights to process a tile, ie., N x T.
Further, to compute the data that can be read in each iteration,
we consider the minimum between 7', the memory bandwidth
B and the compute array size. We chose the minimum of the
aforesaid parameters since in the EnGN architecture vertex
features are loaded on the PE engine in a streamed fashion.
Finally, results are written in the cache and the L2 memory
bank, writecache and writeL2, and the next tile is loaded,
in intertile. The required iterations, as mentioned above, are
then the result of a ceiling function between the total data
movement and the data that can be moved at once.



TABLE III: EnGN analytical model. L2* refers to a dedicated vertices cache.

Movement level Data movement Number of iterations Hierarchy
Toadvertcache min(Lo,Mo,B¥)-N-ceil(Lo/min(B*,Mo)) ceil(Lo/min(B*,Mo)) L2*-LI
ToadvertL2 min((K-L)o,Mo,B)-N-ceil((K-L)o/min(B,Mo)) ceil((K-L)o/min(B,Mo)) L2-L1
Toadedges min(Po,B)-ceil(Po/B) ceil(Po/B) L2-L1
loadweights min(To,Mo,B)-N-ceil(To/min(B,Mo)) ceil(To/min(B,Mo)) L2-L1
aggregate MM-D)T-(ceil(K/M)+ceil(K(N-M)/M))o ceill(K/M)+ceil(K(N-M)/M) LI-LI
writecache min(Mo,Lo, B¥)T-ceil(Lo/min(Mo,B¥)) ceil(Lo/min(Mo ,B¥)) LI-1L2
writeL.2 min(Mo,(K-L)o, B)T-ceil((K-L)o/min(Mo ,B)) ceil((K-L)o/min(Mo ,B)) LI-L2
TABLE IV: HyGCN analytical model.

Movement level Data movement Number of iterations Hierarchy
ToadvertL.2 min(Ko,M, 0 ,B))-N-ceil(Ko/min(B,M, o) ceil(Ko/min(B,M,0)) L2-L1
loadedges min(Pso,B)ceil(Pso/B) ceil(Pso/B) L2-L1

loadweights min(NTo (1 — T'),M.0,B)ceilNTo (1 — I')/min(B, M.0)) | ceilNTo(1 — I')/min(B, M.0)) L2-L1
aggregate min(NP;o,M8)ceil(NPso/(M,,8)) cell(NPsa/(M,,8)) LI-LI
writeinterphase min(KNo, B)ceil(KNo/B) cell(KNo/B) LI-L2
combine KNo+ NTo I LI-L1
readinterphase min(PsNo,B,M_)ceil(PsNo/min(B,M.)) ceil(PsNo/min(B,M.)) L2-L1
writeL.2 min(KTo, B)ceil(KTo/B) ceil(KTo/B) LI-L2

Table[IV] on the other hand, presents the model for HyGCN.
HyGCN consists of two separate engines for the pipelined
execution of the aggregation (PE array with 32 Single-Input-
Multiple-Data cores) and combination (a systolic array with
8 x4 x 128 PEs). The memory organization is slightly different
than in EnGN, using an extra aggregation buffer to store
intermediate results [[17]. To account for these particularities,
we introduce a I' parameter, which reflects the reusability of
data within the combination engine, i.e., the systolic array.
To process a tile in HyGCN, graph data is loaded from
L2 input and edge buffers, loadvertL2 and loadedges. The
aggregation task, aggregation, is handled by all vertices at
the same time, each of them working on up to eight separate
feature components. Then, aggregated features are stored in
the inter-phase cache, ready to be fetched by the combination
engine, writeinterphase and readinterphase, and proceed with
the matrix-vector multiplications. The only remaining step is
to write the results to the output buffer, writeL2.

IV. RESULTS AND DISCUSSION

We evaluate the total data movement, in bits, and number
of iterations for the processing of a tile, i.e., fixed-size portion
of a graph. One could extend the analysis to arbitrary graphs
by multiplying by its number of tiles and modeling the reuse
across tiles. Here, we sweep both input (number of vertices K)
and architectural parameters (number of PEs and bandwidth)
to obtain scalability trends. Other parameters have default
values of N = 30, T' =5, B = 1000, 0 = 4. The number of
edges is P = 10- K to model similar connectivity in growing
tiles. We set P; ~ P as the performance of HyGCN’s sliding
window may vary across tiles.

A. EnGN

Fig. 3] shows the data movement in an EnGN-like accel-
erator, for different graph sizes and PE array size. We take
M = M’ for the sake of clarity. It can be observed how aggre-
gation dominates and leads to over 10x more data movement
than loadvertL2. This is due to the RER-based aggregation
strategy. However, since this movement is happening between
L1 memory levels, it is faster and less energy-consuming
than other data paths. Moreover, we can observe how data

movement increases linearly with K, but not with M x M’.
In the latter case, small PE arrays struggle to compute the tile
efficiently as they need to continuously fetch new values into
the RER, which increases data movement. Another interesting
result is that loadvertcache data, fetched from the dedicated
cache for highly-connected vertices, relieves significant load
from the vertex memory bank at loadvertL2. As compared to
HyGCN, EnGN shows a smaller loadvertL2, since high-degree
vertices are handled by the faster and closer cache memory.

Next, Fig. Eka) shows how the total number of iterations
scale with the memory bandwidth B, which is useful to
detect bandwidth over-provisioning regions. We observe that
bandwidth makes a bigger difference in smaller tiles as data
is constantly moved in and out of the PE array. This is seen
through both the saturation point and the value at which the
curve saturates.

We finally note that previous results, especially from Fig.
[l seem to suggest that there is an optimal PE array size that
depends on the tile size. This is because EnGN tries to fit the
tiles in its PE array of size M 2if M = M’, which is used both
for aggregation and combination. Since a tile has a total size
of K nodes multiplied by the N input features, an array fitting
factor K-N/M? has also been studied. By sweeping this factor
as shown in Fig. [f] it is observed that whenever the number
of elements to be placed in the array is large enough so that
the number of PEs cannot host them, the number of iterations
starts increasing since the aggregation and combination will
take several steps to complete. This would help to explain
why in Fig. [3|data movement first decreases and then increases
with M, thus shows the potential of this methodology to reveal
accelerator-specific behaviors.

B. HyGCN

Fig. 4| breaks down the total data movement of HyGCN.
By comparing to Fig. [3] we can provide interesting insights.
First, we observe that data movement increases almost linearly
with the tile size, but is independent of the array size. Second,
HyGCN involves moves significantly more data than EnGN,
due to its dual architecture and the need to write-read from the
aggregation buffer. Moreover, HyGCN’s aggregation depends
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Fig. 4: HyGCN amount of data movement with varying input graph and accelerator configuration.
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on the size of the input feature vector NV instead of the output
vector T, leading to large aggregations and phase transitions.

Further, Fig. [5|b) represents the HyGCN analogous to Fig.
[Bla). The figure illustrates how HyGCN is also sensitive to
bandwidth and how the saturation point, unlike in EnGN, is
abrupt and independent on the tile size. This is mostly the
effect of having aggregation buffers to orchestrate movement
across phases, which makes HyGCN more bandwidth-hungry.

In order to model HyGCN-specific features, Fig. [7] shows
the effect of the systolic array reuse I' over loadweights, for
different graph depths N. We can see how large values of I',
representing large reuse, alleviate the amount of weights to be
loaded. This highlights the importance of tiling.

V. CONCLUSION

We have presented a characterization method of the data
movement within GNN accelerators based on analytical mod-
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Fig. 7: HyGCN loadweights data movement with varying
systolic array reuse.

els. As a precursor of communication requirements, the pro-
posed method can help comparing different architectures and
explore their design spaces. In this work, we have tested the
proposed method on two novel GNN accelerators and observed
that (i) aggregation is accountable for a large fraction of data
movement, (ii) the two architectures scale very differently, and
(iii)) memory limitations lead to an increase of total iterations,
affecting latency. As future work, the analytical models for
these and other accelerators will be expanded to model graph
properties such as sparsity and validated against cycle-accurate
simulations with dedicated tools.
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