405 research outputs found

    What characterizes an excellent social worker? Perceptions of teachers in contrast to the working field

    Get PDF
    The Hanze University Groningen offers more than 60 different honours programmes for students who want to do more than the regular programme offers them. In these programmes, students are guided to become an excellent professional. Competencies defining an excellent professional were assessed in a previous research by means of focus group discussions and Delphi survey with professionals and experts in the social worker field, resulting in a profile of the excellent social worker consisting of 6 domains. Our aim is to investigate the opinions of the teachers at the faculty Social Work regarding the profile of the excellent Social Worker. In addition, we aim to explore how teachers recognize, acknowledge and encourage excellence among their students. The Delphi method was used to investigate the opinions of the teachers. All teachers of Social Work Department were invited to fill in a survey giving their opinion on the excellent social worker profile as stated by the professionals. The teachers were asked to choose whether each domain was “essential”, “important but not essential” or “not needed” for an excellent Social Worker. Currently, 35 teachers answered the survey. Teachers agree that the competencies of the profile are essential for an excellent professional, with exception of ‘coaching and supporting your colleagues’. Over 50% of the respondents think that this is important but not essential. More than 90% of the teachers agree that “thinking out of the box” and “having the courage to think of different and innovative solutions” are essential competencies for excellence. In addition, teachers indicated that ethics, internationalization and entrepreneurship are missing in the profile. To conclude, the profile is acknowledged by teachers with broad support. In the next stage of the research, teachers will be asked about how they stimulate these competences by students. The research will be completed in June

    Sexual maturation protects against development of lung inflammation through estrogen.

    Get PDF
    Increasing levels of estrogen and progesterone are suggested to play a role in the gender switch in asthma prevalence during puberty. We investigated whether the process of sexual maturation in mice affects the development of lung inflammation in adulthood and the contributing roles of estrogen and progesterone during this process. By inducing ovalbumin-induced lung inflammation in sexually mature and immature (ovariectomized before sexual maturation) adult mice, we showed that sexually immature adult mice developed more eosinophilic lung inflammation. This protective effect of \u22puberty\u22 appears to be dependent on estrogen, as estrogen supplementation at the time of ovariectomy protected against development of lung inflammation in adulthood whereas progesterone supplementation did not. Investigating the underlying mechanism of estrogen-mediated protection, we found that estrogen-treated mice had higher expression of the anti-inflammatory mediator secretory leukoprotease inhibitor (SLPI) and lower expression of the proasthmatic cytokine IL-33 in parenchymal lung tissue and that their expressions colocalized with type II alveolar epithelial cells (AECII). Treating AECII directly with SLPI significantly inhibited IL-33 production upon stimulation with ATP. Our data suggest that estrogen during puberty has a protective effect on asthma development, which is accompanied by induction of anti-inflammatory SLPI production and inhibition of proinflammatory IL-33 production by AECII

    Dual role of YM1+ M2 macrophages in allergic lung inflammation

    Get PDF
    Abstract Alternatively activated (M2 or YM1+) macrophages have been associated with the development of asthma but their contribution to disease initiation and progression remains unclear. To assess the therapeutic potential of modulating these M2 macrophages, we have studied inhibition of M2 polarisation during and after development of allergic lung inflammation by treating with cynaropicrin, a galectin-3 pathway inhibitor. Mice that were treated with this inhibitor of M2 polarisation during induction of allergic inflammation developed less severe eosinophilic lung inflammation and less collagen deposition around airways, while the airway α-smooth muscle actin layer was unaffected. When we treated with cynaropicrin after induction of inflammation, eosinophilic lung inflammation and collagen deposition were also inhibited though to a lesser extent. Unexpectedly, both during and after induction of allergic inflammation, inhibition of M2 polarisation resulted in a shift towards neutrophilic inflammation. Moreover, airway hyperresponsiveness was worse in mice treated with cynaropicrin as compared to allergic mice without inhibitor. These results show that M2 macrophages are associated with remodeling and development of eosinophilic lung inflammation, but prevent development of neutrophilic lung inflammation and worsening of airway hyperresponsiveness. This study suggests that macrophages contribute to determining development of eosinophilic or neutrophilic lung inflammation in asthma

    Laminin α4 contributes to airway remodeling and inflammation in asthma

    Get PDF
    Airway inflammation and remodeling are characteristic features of asthma, both contributing to airway hyperresponsiveness (AHR) and lung function limitation. Airway smooth muscle (ASM) accumulation and extracellular matrix deposition are characteristic features of airway remodeling, which may contribute to persistent AHR. Laminins containing the α2 chain contribute to characteristics of ASM remodeling in vitro and AHR in animal models of asthma. The role of other laminin chains, including the laminin α4 and α5 chains, which contribute to leukocyte migration in other diseases, is currently unknown. The aim of the current study was to investigate the role of these laminin chains in ASM function and in AHR, remodeling and inflammation in asthma. Expression of both laminin α4 and α5 was observed in the human and mouse ASM bundle. In vitro, laminin α4 was found to promote a pro-proliferative, pro-contractile and pro-fibrotic ASM cell phenotype. In line, treatment with laminin α4 and α5 function-blocking antibodies reduced allergen-induced increases in ASM mass in a mouse model of allergen-induced asthma. Moreover, eosinophilic inflammation was reduced by the laminin α4 function-blocking antibody as well. Using airway biopsies from healthy subjects and asthmatic patients, we found inverse correlations between ASM α4 chain expression and lung function and AHR, whereas eosinophil numbers correlated positively with expression of laminin α4 in the ASM bundle. This study for the first time indicates a prominent role for laminin α4 in ASM function and in inflammation, AHR and remodeling in asthma, whereas the role of laminin α5 is more subtle

    Wegwijs in het research center Talent Development in Higher Education and Society - 2021

    Get PDF
    What is expected of me as a researcher in the Research Center Talent Development in Higher Education and Society? What vision forms the basis of the research in the group? How are practical matters divided and handled? And what rules and procedures are in place for writing research proposals, presentations or subsidy applications

    The GRAVITY+ Project: Towards All-sky, Faint-Science, High-Contrast Near-Infrared Interferometry at the VLTI

    Full text link
    The GRAVITY instrument has been revolutionary for near-infrared interferometry by pushing sensitivity and precision to previously unknown limits. With the upgrade of GRAVITY and the Very Large Telescope Interferometer (VLTI) in GRAVITY+, these limits will be pushed even further, with vastly improved sky coverage, as well as faint-science and high-contrast capabilities. This upgrade includes the implementation of wide-field off-axis fringe-tracking, new adaptive optics systems on all Unit Telescopes, and laser guide stars in an upgraded facility. GRAVITY+ will open up the sky to the measurement of black hole masses across cosmic time in hundreds of active galactic nuclei, use the faint stars in the Galactic centre to probe General Relativity, and enable the characterisation of dozens of young exoplanets to study their formation, bearing the promise of another scientific revolution to come at the VLTI.Comment: Published in the ESO Messenge
    • 

    corecore