7 research outputs found

    Lidar Sensor Performance in Closed-Loop Flight Testing of the Morpheus Rocket-Propelled Lander to a Lunar-Like Hazard Field

    Get PDF
    For the first time, a suite of three lidar sensors have been used in flight to scan a lunar-like hazard field, identify a safe landing site, and, in concert with an experimental Guidance, Navigation, and Control (GN&C) system, help to guide the Morpheus autonomous, rocket-propelled, free-flying lander to that safe site on the hazard field. The lidar sensors and GN&C system are part of the Autonomous Precision Landing and Hazard Detection and Avoidance Technology (ALHAT) project which has been seeking to develop a system capable of enabling safe, precise crewed or robotic landings in challenging terrain on planetary bodies under any ambient lighting conditions. The 3-D imaging Flash Lidar is a second generation, compact, real-time, aircooled instrument developed from a number of components from industry and NASA and is used as part of the ALHAT Hazard Detection System (HDS) to scan the hazard field and build a 3-D Digital Elevation Map (DEM) in near-real time for identifying safe sites. The Flash Lidar is capable of identifying a 30 cm hazard from a slant range of 1 km with its 8 cm range precision (1-s). The Flash Lidar is also used in Hazard Relative Navigation (HRN) to provide position updates down to a 250m slant range to the ALHAT navigation filter as it guides Morpheus to the safe site. The Navigation Doppler Lidar (NDL) system has been developed within NASA to provide velocity measurements with an accuracy of 0.2 cm/sec and range measurements with an accuracy of 17 cm both from a maximum range of 2,200 m to a minimum range of several meters above the ground. The NDL"TM"s measurements are fed into the ALHAT navigation filter to provide lander guidance to the safe site. The Laser Altimeter (LA), also developed within NASA, provides range measurements with an accuracy of 5 cm from a maximum operational range of 30 km down to 1 m and, being a separate sensor from the Flash Lidar, can provide range along a separate vector. The LA measurements are also fed into the ALHAT navigation filter to provide lander guidance to the safe site. The flight tests served as the culmination of the TRL 6 journey for the ALHAT system and included launch from a pad situated at the NASA-Kennedy Space Center Shuttle Landing Facility (SLF) runway, a lunar-like descent trajectory from an altitude of 250m, and landing on a lunar-like hazard field of rocks, craters, hazardous slopes, and safe sites 400m down-range just off the North end of the runway. The tests both confirmed the expected performance and also revealed several challenges present in the flight-like environment which will feed into future TRL advancement of the sensors. Guidance provided by the ALHAT system was impeded in portions of the trajectory and intermittent near the end of the trajectory due to optical effects arising from air heated by the rocket engine. The Flash Lidar identified hazards as small as 30 cm from the maximum slant range of 450 m which Morpheus could provide; however, it was occasionally susceptible to an increase in range noise due to scintillation arising from air heated by the Morpheus rocket engine which entered its Field-of-View (FOV). The Flash Lidar was also susceptible to pre-triggering, during the HRN phase, on a dust cloud created during launch and transported down-range by the wind. The NDL provided velocity and range measurements to the expected accuracy levels yet it was also susceptible to signal degradation due to air heated by the rocket engine. The LA, operating with a degraded transmitter laser, also showed signal attenuation over a few seconds at a specific phase of the flight due to the heat plume generated by the rocket engine

    An Anaerobic-Type α-Ketoglutarate Ferredoxin Oxidoreductase Completes the Oxidative Tricarboxylic Acid Cycle of Mycobacterium tuberculosis

    Get PDF
    Aerobic organisms have a tricarboxylic acid (TCA) cycle that is functionally distinct from those found in anaerobic organisms. Previous reports indicate that the aerobic pathogen Mycobacterium tuberculosis lacks detectable α-ketoglutarate (KG) dehydrogenase activity and drives a variant TCA cycle in which succinyl-CoA is replaced by succinic semialdehyde. Here, we show that M. tuberculosis expresses a CoA-dependent KG dehydrogenase activity, albeit one that is typically found in anaerobic bacteria. Unlike most enzymes of this family, the M. tuberculosis KG: ferredoxin oxidoreductase (KOR) is extremely stable under aerobic conditions. This activity is absent in a mutant strain deleted for genes encoding a previously uncharacterized oxidoreductase, and this strain is impaired for aerobic growth in the absence of sufficient amounts of CO2. Interestingly, inhibition of the glyoxylate shunt or exclusion of exogenous fatty acids alleviates this growth defect, indicating the presence of an alternate pathway that operates in the absence of β-oxidation. Simultaneous disruption of KOR and the first enzyme of the succinic semialdehyde pathway (KG decarboxylase; KGD) results in strict dependence upon the glyoxylate shunt for growth, demonstrating that KG decarboxylase is also functional in M. tuberculosis intermediary metabolism. These observations demonstrate that unlike most organisms M. tuberculosis utilizes two distinct TCA pathways from KG, one that functions concurrently with β-oxidation (KOR-dependent), and one that functions in the absence of β-oxidation (KGD-dependent). As these pathways are regulated by metabolic cues, we predict that their differential utilization provides an advantage for growth in different environments within the host

    Flush Airdata Sensing (FADS) System Calibration Procedures and Results for Blunt Forebodies

    No full text
    Blunt-forebody pressure data are used to study the behavior of the NASA Dryden Flight Research Center flush airdata sensing (FADS) pressure model and solution algorithm. The model relates surface pressure measurements to the airdata state. Spliced from the potential flow solution for uniform flow over a sphere and the modified Newtonian impact theory, the model was shown to apply to a wide range of blunt-forebody shapes and Mach numbers. Calibrations of a sphere, spherical cones, a Rankine half body, and the F-14, F/A-18, X-33, X-34, and X-38 configurations are shown. The three calibration parameters are well-behaved from Mach 0.25 to Mach 5.0, an angle-of-attack range extending to greater than 30 deg, and an angle-of-sideslip range extending to greater than 15 deg. Contrary to the sharp calibration changes found on traditional pitot-static systems at transonic speeds, the FADS calibrations are smooth, monotonic functions of Mach number and effective angles of attack and sideslip. Because the FADS calibration is sensitive to pressure port location, detailed measurements of the actual pressure port locations on the flight vehicle are required and the wind-tunnel calibration model should have pressure ports in similar locations. The procedure for calibrating a FADS system is outlined
    corecore