20 research outputs found

    Assessing and minimizing the effects of noise and motion in clinical DTI at 3 T

    No full text
    Compared with conventional MRI, diffusion tensor imaging (DTI) is more prone to thermal noise and motion. Optimized sampling schemes have been proposed that reduce the propagation of noise. At 3 T, however, motion may play a more dominant role than noise. Although the effects of noise at 3 T are less compared with 1.5 T because of the higher signal-to-noise ratio, motion is independent of field strength and will persist. To improve the reliability of clinical DTI at 3 T, it is important to know to what extent noise and motion contribute to the uncertainties of the DTI indices. In this study, the effects of noise- and motion-related signal uncertainties are disentangled using in vivo measurements and computer simulations. For six clinically standard available sampling schemes, the reproducibility was assessed in vivo, with and without motion correction applied. Additionally, motion and noise simulations were performed to determine the relative contributions of motion and noise to the uncertainties of the mean diffusivity (MD) and fractional anisotropy (FA). It is shown that the contributions of noise and motion are of the same order of magnitude at 3 T. Similar to the propagation of noise, the propagation of motion-related signal perturbations is also influenced by the choice of sampling scheme. Sampling schemes with only six diffusion directions demonstrated a lower reproducibility compared with schemes with 15 and 32 directions and feature a positive bias for the FA in relatively isotropic tissue. Motion correction helps improving the precision and accuracy of DTI indices

    3D multi-slab diffusion-weighted readout-segmented EPI with real-time cardiac-reordered k-space acquisition

    No full text
    Purpose: The aim of this study was to develop, implement, and demonstrate a three‐dimensional (3D) extension of the readout‐segmented echo‐planar imaging (rs‐EPI) sequence for diffusion imaging. Theory and Methods: Potential k‐space acquisition schemes were assessed by simulating their associated spatial point spread functions. Motion‐induced phase artifacts were also simulated to test navigator corrections and a real‐time reordering of the k‐space acquisition relative to the cardiac cycle. The cardiac reordering strategy preferentially chooses readout segments closer to the center of 3D k‐space during diastole. Motion‐induced phase artifacts were quantified by calculating the voxel‐wise temporal variation in a set of repeated diffusion‐weighted acquisitions. Based on the results of these simulations, a 2D navigated multi‐slab rs‐EPI sequence with real‐time cardiac reordering was implemented. The multi‐slab implementation enables signal‐to‐noise ratio‐optimal repetition times of 1–2 s. Results: Cardiac reordering was validated in simulations and in vivo using the multi‐slab rs‐EPI sequence. In comparisons with standard k‐space acquisitions, cardiac reordering was shown to reduce the variability due to motion‐induced phase artifacts by 30–50%. High‐resolution diffusion tensor imaging data acquired with the cardiac‐reordered multi‐slab rs‐EPI sequence are presented. Conclusion: A 3D multi‐slab rs‐EPI sequence with cardiac reordering has been demonstrated in vivo and is shown to provide high‐quality 3D diffusion‐weighted data sets

    Respiratory motion model based on the noise covariance matrix of a receive array

    No full text
    PURPOSE:Tracking of the internal anatomy by means of a motion model that uses the MR-derived motion fields and noise covariance matrix (NCM) dynamic as a surrogate signal.METHODS:A 2D respiratory motion model was developed based on the MR-derived motion fields and the NCM of a receive array used in MRI. Temporal dynamics of the NCM were used as a motion surrogate for a linear correspondence motion model. The model performance was tested on five healthy volunteers with a liver as the target. The motion fields were calculated from the cineMR frames with an optical flow registration tool.RESULTS:The model estimated the liver motion with an average residual error of 2.3 mm (13% of the motion amplitude). The model formation takes 3 min and the model latency was 0.5 s in the current implementation. The limiting factor for the latency is the current update time of the NCM (0.48 s), which in principle can be reduced to 0.004 s with an alternative way to determine the NCM.CONCLUSIONS:The 2D respiratory motion of the liver can be effectively estimated with the linear motion model that uses the temporal behavior of the NCM as motion surrogate. Magn Reson Med 79:1730-1735, 2018. © 2017 International Society for Magnetic Resonance in Medicin

    Respiratory motion model based on the noise covariance matrix of a receive array

    No full text
    International audiencePURPOSE:Tracking of the internal anatomy by means of a motion model that uses the MR-derived motion fields and noise covariance matrix (NCM) dynamic as a surrogate signal.METHODS:A 2D respiratory motion model was developed based on the MR-derived motion fields and the NCM of a receive array used in MRI. Temporal dynamics of the NCM were used as a motion surrogate for a linear correspondence motion model. The model performance was tested on five healthy volunteers with a liver as the target. The motion fields were calculated from the cineMR frames with an optical flow registration tool.RESULTS:The model estimated the liver motion with an average residual error of 2.3 mm (13% of the motion amplitude). The model formation takes 3 min and the model latency was 0.5 s in the current implementation. The limiting factor for the latency is the current update time of the NCM (0.48 s), which in principle can be reduced to 0.004 s with an alternative way to determine the NCM.CONCLUSIONS:The 2D respiratory motion of the liver can be effectively estimated with the linear motion model that uses the temporal behavior of the NCM as motion surrogate. Magn Reson Med 79:1730-1735, 2018. © 2017 International Society for Magnetic Resonance in Medicin

    Anatomical evaluation of deep-learning synthetic computed tomography images generated from male pelvis cone-beam computed tomography

    Get PDF
    Background and purpose: To improve cone-beam computed tomography (CBCT), deep-learning (DL)-models are being explored to generate synthetic CTs (sCT). The sCT evaluation is mainly focused on image quality and CT number accuracy. However, correct representation of daily anatomy of the CBCT is also important for sCTs in adaptive radiotherapy. The aim of this study was to emphasize the importance of anatomical correctness by quantitatively assessing sCT scans generated from CBCT scans using different paired and unpaired dl-models. Materials and methods: Planning CTs (pCT) and CBCTs of 56 prostate cancer patients were included to generate sCTs. Three different dl-models, Dual-UNet, Single-UNet and Cycle-consistent Generative Adversarial Network (CycleGAN), were evaluated on image quality and anatomical correctness. The image quality was assessed using image metrics, such as Mean Absolute Error (MAE). The anatomical correctness between sCT and CBCT was quantified using organs-at-risk volumes and average surface distances (ASD). Results: MAE was 24 Hounsfield Unit (HU) [range:19-30 HU] for Dual-UNet, 40 HU [range:34-56 HU] for Single-UNet and 41HU [range:37-46 HU] for CycleGAN. Bladder ASD was 4.5 mm [range:1.6–12.3 mm] for Dual-UNet, 0.7 mm [range:0.4–1.2 mm] for Single-UNet and 0.9 mm [range:0.4–1.1 mm] CycleGAN. Conclusions: Although Dual-UNet performed best in standard image quality measures, such as MAE, the contour based anatomical feature comparison with the CBCT showed that Dual-UNet performed worst on anatomical comparison. This emphasizes the importance of adding anatomy based evaluation of sCTs generated by dl-models. For applications in the pelvic area, direct anatomical comparison with the CBCT may provide a useful method to assess the clinical applicability of dl-based sCT generation methods

    Magnetic resonance imaging in precision radiation therapy for lung cancer

    No full text
    Radiotherapy remains the cornerstone of curative treatment for inoperable locally advanced lung cancer, given concomitantly with platinum-based chemotherapy. With poor overall survival, research efforts continue to explore whether integration of advanced radiation techniques will assist safe treatment intensification with the potential for improving outcomes. One advance is the integration of magnetic resonance imaging (MRI) in the treatment pathway, providing anatomical and functional information with excellent soft tissue contrast without exposure of the patient to radiation. MRI may complement or improve the diagnostic staging accuracy of F-18 fluorodeoxyglucose position emission tomography and computerized tomography imaging, particularly in assessing local tumour invasion and is also effective for identification of nodal and distant metastatic disease. Incorporating anatomical MRI sequences into lung radiotherapy treatment planning is a novel application and may improve target volume and organs at risk delineation reproducibility. Furthermore, functional MRI may facilitate dose painting for heterogeneous target volumes and prediction of normal tissue toxicity to guide adaptive strategies. MRI sequences are rapidly developing and although the issue of intra-thoracic motion has historically hindered the quality of MRI due to the effect of motion, progress is being made in this field. Four-dimensional MRI has the potential to complement or supersede 4D CT and 4D F-18-FDG PET, by providing superior spatial resolution. A number of MR-guided radiotherapy delivery units are now available, combining a radiotherapy delivery machine (linear accelerator or cobalt-60 unit) with MRI at varying magnetic field strengths. This novel hybrid technology is evolving with many technical challenges to overcome. It is anticipated that the clinical benefits of MR-guided radiotherapy will be derived from the ability to adapt treatment on the fly for each fraction and in real-time, using 'beam-on' imaging. The lung tumour site group of the Atlantic MR-Linac consortium is working to generate a challenging MR-guided adaptive workflow for multi-institution treatment intensification trials in this patient group

    Anatomical evaluation of deep-learning synthetic computed tomography images generated from male pelvis cone-beam computed tomography

    No full text
    Background and purpose: To improve cone-beam computed tomography (CBCT), deep-learning (DL)-models are being explored to generate synthetic CTs (sCT). The sCT evaluation is mainly focused on image quality and CT number accuracy. However, correct representation of daily anatomy of the CBCT is also important for sCTs in adaptive radiotherapy. The aim of this study was to emphasize the importance of anatomical correctness by quantitatively assessing sCT scans generated from CBCT scans using different paired and unpaired DL-models. Materials and methods: Planning CTs (pCT) and CBCTs of 56 prostate cancer patients were included to generate sCTs. Three different DL-models, Dual-UNet, Single-UNet and Cycle-consistent Generative Adversarial Network (CycleGAN), were evaluated on image quality and anatomical correctness. The image quality was assessed using image metrics, such as Mean Absolute Error (MAE). The anatomical correctness between sCT and CBCT was quantified using organs-at-risk volumes and average surface distances (ASD). Results: MAE was 24 Hounsfield Unit (HU) [range:19-30 HU] for Dual-UNet, 40 HU [range:34-56 HU] for Single-UNet and 41HU [range:37-46 HU] for CycleGAN. Bladder ASD was 4.5 mm [range:1.6–12.3 mm] for Dual-UNet, 0.7 mm [range:0.4–1.2 mm] for Single-UNet and 0.9 mm [range:0.4–1.1 mm] CycleGAN. Conclusions: Although Dual-UNet performed best in standard image quality measures, such as MAE, the contour based anatomical feature comparison with the CBCT showed that Dual-UNet performed worst on anatomical comparison. This emphasizes the importance of adding anatomy based evaluation of sCTs generated by DL-models. For applications in the pelvic area, direct anatomical comparison with the CBCT may provide a useful method to assess the clinical applicability of DL-based sCT generation methods

    Characterization of the first RF coil dedicated to 1.5 T MR guided radiotherapy

    No full text
    The purpose of this study is to investigate the attenuation characteristics of a novel radiofrequency (RF) coil, which is the first coil that is solely dedicated to MR guided radiotherapy with a 1.5 T MR-linac. Additionally, we investigated the impact of the treatment beam on the MRI performance of this RF coil. First, the attenuation characteristics of the RF coil were characterized. Second, we investigated the impact of the treatment beam on the MRI performance of the RF coil. We additionally demonstrated the ability of the anterior coil to attenuate returning electrons and thereby reducing the dose to the skin at the distal side of the treatment beam. Intensity modulated radiation therapy simulation of a clinically viable treatment plan for spinal bone metastasis shows a decrease of the dose to the planned tumor volume of 1.8% as a result of the MR coil around the patient. Ionization chamber and film measurements show that the anterior and posterior coil attenuate the beam homogeneously by 0.4% and 2.2%, respectively. The impact of the radiation resulted in a slight drop of the time-course signal-to-noise ratio and was dependent on imaging parameters. However, we could not observe any image artifacts resulting from this irradiation in any situation. In conclusion, the investigated MR-coil can be utilized for treatments with the 1.5 T-linac system. However, there is still room for improvement when considering both the dosimetric and imaging performance of the coil

    MRI commissioning of 1.5T MR-linac systems – a multi-institutional study

    No full text
    Background: Magnetic Resonance linear accelerator (MR-linac) systems represent a new type of technology that allows for online MR-guidance for high precision radiotherapy (RT). Currently, the first MR-linac installations are being introduced clinically. Since the imaging performance of these integrated MR-linac systems is critical for their application, a thorough commissioning of the MRI performance is essential. However, guidelines on the commissioning of MR-guided RT systems are not yet defined and data on the performance of MR-linacs are not yet available. Materials & methods: Here we describe a comprehensive commissioning protocol, which contains standard MRI performance measurements as well as dedicated hybrid tests that specifically assess the interactions between the Linac and the MRI system. The commissioning results of four MR-linac systems are presented in a multi-center study. Results: Although the four systems showed similar performance in all the standard MRI performance tests, some differences were observed relating to the hybrid character of the systems. Field homogeneity measurements identified differences in the gantry shim configuration, which was later confirmed by the vendor. Conclusion: Our results highlight the importance of dedicated hybrid commissioning tests and the ability to compare the machines between institutes at this very early stage of clinical introduction. Until formal guidelines and tolerances are defined the tests described in this study may be used as a practical guideline. Moreover, the multi-center results provide initial bench mark data for future MR-linac installations

    MRI commissioning of 1.5T MR-linac systems – a multi-institutional study

    Get PDF
    Background: Magnetic Resonance linear accelerator (MR-linac) systems represent a new type of technology that allows for online MR-guidance for high precision radiotherapy (RT). Currently, the first MR-linac installations are being introduced clinically. Since the imaging performance of these integrated MR-linac systems is critical for their application, a thorough commissioning of the MRI performance is essential. However, guidelines on the commissioning of MR-guided RT systems are not yet defined and data on the performance of MR-linacs are not yet available. Materials & methods: Here we describe a comprehensive commissioning protocol, which contains standard MRI performance measurements as well as dedicated hybrid tests that specifically assess the interactions between the Linac and the MRI system. The commissioning results of four MR-linac systems are presented in a multi-center study. Results: Although the four systems showed similar performance in all the standard MRI performance tests, some differences were observed relating to the hybrid character of the systems. Field homogeneity measurements identified differences in the gantry shim configuration, which was later confirmed by the vendor. Conclusion: Our results highlight the importance of dedicated hybrid commissioning tests and the ability to compare the machines between institutes at this very early stage of clinical introduction. Until formal guidelines and tolerances are defined the tests described in this study may be used as a practical guideline. Moreover, the multi-center results provide initial bench mark data for future MR-linac installations
    corecore