
 

Anatomical evaluation of deep-learning synthetic computed
tomography images generated from male pelvis cone-beam
computed tomography
Citation for published version (APA):
de Hond, Y. J. M., Kerckhaert, C. E. M., van Eijnatten, M. A. J. M., van Haaren, P. M. A., Hurkmans, C. W., &
Tijssen, R. H. N. (2023). Anatomical evaluation of deep-learning synthetic computed tomography images
generated from male pelvis cone-beam computed tomography. Physics and Imaging in Radiation Oncology, 25,
Article 100416. https://doi.org/10.1016/j.phro.2023.100416

Document license:
CC BY-NC-ND

DOI:
10.1016/j.phro.2023.100416

Document status and date:
Published: 01/01/2023

Document Version:
Publisher’s PDF, also known as Version of Record (includes final page, issue and volume numbers)

Please check the document version of this publication:

• A submitted manuscript is the version of the article upon submission and before peer-review. There can be
important differences between the submitted version and the official published version of record. People
interested in the research are advised to contact the author for the final version of the publication, or visit the
DOI to the publisher's website.
• The final author version and the galley proof are versions of the publication after peer review.
• The final published version features the final layout of the paper including the volume, issue and page
numbers.
Link to publication

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

            • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
            • You may not further distribute the material or use it for any profit-making activity or commercial gain
            • You may freely distribute the URL identifying the publication in the public portal.

If the publication is distributed under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license above, please
follow below link for the End User Agreement:
www.tue.nl/taverne

Take down policy
If you believe that this document breaches copyright please contact us at:
openaccess@tue.nl
providing details and we will investigate your claim.

Download date: 04. Oct. 2023

https://doi.org/10.1016/j.phro.2023.100416
https://doi.org/10.1016/j.phro.2023.100416
https://research.tue.nl/en/publications/c4f4574e-07d9-4750-b777-56a7e38064ab


Physics and Imaging in Radiation Oncology 25 (2023) 100416

Available online 23 January 2023
2405-6316/© 2023 The Author(s). Published by Elsevier B.V. on behalf of European Society of Radiotherapy & Oncology. This is an open access article under the
CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

Original Research Article 

Anatomical evaluation of deep-learning synthetic computed tomography 
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A B S T R A C T   

Background and purpose: To improve cone-beam computed tomography (CBCT), deep-learning (DL)-models are 
being explored to generate synthetic CTs (sCT). The sCT evaluation is mainly focused on image quality and CT 
number accuracy. However, correct representation of daily anatomy of the CBCT is also important for sCTs in 
adaptive radiotherapy. The aim of this study was to emphasize the importance of anatomical correctness by 
quantitatively assessing sCT scans generated from CBCT scans using different paired and unpaired DL-models. 
Materials and methods: Planning CTs (pCT) and CBCTs of 56 prostate cancer patients were included to generate 
sCTs. Three different DL-models, Dual-UNet, Single-UNet and Cycle-consistent Generative Adversarial Network 
(CycleGAN), were evaluated on image quality and anatomical correctness. The image quality was assessed using 
image metrics, such as Mean Absolute Error (MAE). The anatomical correctness between sCT and CBCT was 
quantified using organs-at-risk volumes and average surface distances (ASD). 
Results: MAE was 24 Hounsfield Unit (HU) [range:19-30 HU] for Dual-UNet, 40 HU [range:34-56 HU] for Single- 
UNet and 41HU [range:37-46 HU] for CycleGAN. Bladder ASD was 4.5 mm [range:1.6–12.3 mm] for Dual-UNet, 
0.7 mm [range:0.4–1.2 mm] for Single-UNet and 0.9 mm [range:0.4–1.1 mm] CycleGAN. 
Conclusions: Although Dual-UNet performed best in standard image quality measures, such as MAE, the contour 
based anatomical feature comparison with the CBCT showed that Dual-UNet performed worst on anatomical 
comparison. This emphasizes the importance of adding anatomy based evaluation of sCTs generated by DL- 
models. For applications in the pelvic area, direct anatomical comparison with the CBCT may provide a useful 
method to assess the clinical applicability of DL-based sCT generation methods.   

1. Introduction 

In radiotherapy, a treatment plan is generally made on a computed 
tomography (CT) image, known as the planning CT (pCT). To verify 
patient position prior to treatment, a cone-beam CT (CBCT) is often used 
to correct the patients position based on bony anatomy or target volume 
with reference to the pCT [1]. The anatomy visible on the pCT and daily 
CBCT can vary due to internal organ position and volume differences. 
Particularly in the pelvic region, internal bladder and rectum motions 
were found to be major sources of geometric uncertainty [2]. The in
fluence of these anatomical differences on the dose can be minimized by 
treatment couch corrections and plan adaptations. To adapt the plan to 
daily anatomical changes, Plan Of the Day (PotD) and Online Plan 
Adaptation can be used [3–5]. However, CBCT image quality is often 

insufficient to enable dose calculations, due to inaccurate CT numbers 
and imaging artifacts. To improve CBCT quality and accuracy of CT 
numbers, several studies have proposed synthetic CT (sCT) generation 
via deep-learning (DL) [6–15]. These DL-models can be grouped into 
paired- and unpaired-data models. Paired-data models are trained and 
validated with paired input and reference images that share geometrical 
information [16]. Unpaired DL-models are trained and validated with 
images from a target and a source domain that do not require shared 
information [17]. The performance of these two categories of DL-models 
varies. For example, Rossi et al. concluded that the paired model out
performed the unpaired ones based on image metrics, whereas on visual 
inspection of the anatomical differences between sCT and CBCT the 
unpaired models performed better [18]. 

To use sCTs for clinical applications such as PotD selection, sCTs 
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require calibrated CT numbers, image quality comparable to pCT and 
anatomical features identical to the CBCT. To evaluate sCT image 
quality, the deformed pCT (pCT_deformed), deformably registered to the 
CBCT, is often used as ground truth. This evaluation is in most studies 
based on CT value-based image metrics such as Mean Absolute Error 
(MAE) and Root-Mean-Squared-Error (RMSE) between the ground truth 
and sCT [7,8]. To evaluate the correspondence of structural features the 
structural similarity index measure (SSIM) between sCT and ground 
truth is often used [19]. However, this method is sensitive to registration 
errors. 

Deformable registration in the pelvic area can be more prone to 
registration errors, since the daily anatomical changes in the pelvic area 
are generally larger compared to areas such as head-and-neck, [20]. In 
these regions, a direct evaluation on the CBCT would be desirable. 
However, as CT value-based image metrics cannot be used on CBCT due 
to artifacts and inaccurate CT numbers, a contour based evaluation 
might be preferred. Therefore, the present study used the contours of the 
CBCT and sCT to compare the anatomical correctness of sCT. The aim of 
this study was to emphasize the importance of anatomical correctness by 
quantitatively assessing sCT scans generated from CBCT scans using 
different paired and unpaired deep learning models. 

2. Materials and methods 

2.1. Data 

This study retrospectively included pCT and CBCT images of 56 
randomly selected prostate cancer patients that received radiotherapy 
treatment between February 2020 and January 2021 at the Catharina 
Hospital, the Netherlands. This research was conducted on anonymized 
patient data and, according to Dutch law, this research was approved 
under so-called non-WMO legislation (medical research law waiver). 
pCT and CBCT images were acquired on a Philips big bore CT scanner 
(Philips, Eindhoven, Netherlands) and on different X-ray Volumetric 
Imaging (XVI) v5.0.4 systems (Elekta AB, Stockholm, Sweden), respec
tively. Average interval between pCT and the selected CBCT scan was 20 
days (range: 2–56 days). CBCT scans were recorded with a small field-of- 
view (FOV), resulting in an image of 270x270 pixels with pixel size of 
1.00x1.00 mm. The number of axial slices was 128 slices with a slice 
thickness of 1.00 mm. The pCT image size was 512x512 pixels with pixel 
size of 1.17x1.17 mm and slice thickness of 3.00 mm. 

2.2. Image preprocessing 

The pCTs were rigidly registered to the corresponding CBCT 
(pCT_rigid), with an iterative adaptive stochastic gradient descent 
optimization, and deformed (pCT_deformed) with a deformable 3D B- 
spline image registration, part of the Elastix registration toolbox (v5.0.0) 
[21]. Images were normalized (UNet [0–1], Cycle-consistent Generative 
Adversarial Network (CycleGAN)[-1/1]) and cropped to 256x256 pixels 
around the center of the image. 

2.3. Deep-learning models 

Three commonly used and publicly available distinctive DL-models 
were used in this study, namely Dual-UNet, Single-UNet and CycleGAN 
[7–9]. Dual-UNet was based on the architecture as proposed by Chen 
et al. [8]. The model was trained with Keras and Tensorflow v.2.6 in 
Python (v3.8). Dual-UNet was trained with CBCT and pCT_rigid as 
paired input and pCT_deformed as ground truth. Loss functions and 
hyperparameters were adopted from the optimized model in Chen et al. 
[8]. The Single-UNet model was based on the architecture as proposed 
by Jin et al. [9]. The first difference between the Dual-UNet and the 
Single-UNet model was an additional skip connection between input and 
output. The second difference was training of the model, the Single-UNet 
was paired trained with just the CBCT as input and pCT_deformed was 

set as ground truth. Loss functions and hyperparameters were adopted 
from the optimized model in Jin et al. [9]. The CycleGAN architecture 
was based on a study by Maspero et al. [7]. The implementation of the 
model was based on Zhu et al. and trained with Tensorflow (v2.1.0) in 
Python v3.8. (10). CycleGAN was trained and validated with unpaired 
input CBCT and ground truth pCT_rigid. Loss functions and hyper
parameters were adopted from the optimized model in Maspero et al. 
[7]. 

2.4. Training of the DL-models 

First the data was randomly divided in training/validation/test sets 
of 31/16/9 patients respectively, which was a ratio of 55 %/29 %/16 %. 
Preliminary analyses performed on a subset of the scans (data not 
shown) investigated the minimum amount of data necessary to train the 
UNet models and showed no improvement after including 26 paired 
CBCT/CT scans. Residual errors in image registration that were caused 
by changes in bladder and rectum filling, complicated the paired 
training approach in Dual-UNet and Single-UNet. To reduce training 
errors due to mismatch in image registration of paired datasets, images 
were excluded from training and validation when the image registration 
noticeably failed (for example, at the outer slices or in cases where the 
bladder size differ too much to resolve). This resulted in 2236 training, 
1073 validation and 1416 test 2D images. Since CycleGAN was un
paired, slice selection was not necessary. This is an advantage of un
paired training, since CycleGAN is less sensitive to training errors caused 
by registration errors. The dataset was divided into sets of 3928 training, 
2024 validation and 1416 test 2D images. 

Models were trained on a RTX A5000 GPU (NVIDIA Corporation, 
Santa Clara, United States) for 200 epoch with a batch size of 40 in UNet 
and a batch size of 7 in CycleGAN. Out of the 200 epochs, the final model 
was selected based on the lowest validation loss, in order to minimize 
the risk of overfitting. 

2.5. Evaluation 

To evaluate the performance of the three models, common image 
quality metrics were calculated between sCT and pCT_deformed: MAE, 
ME, peak signal-to-noise ratio (PSNR), SSIM and RMSE [19]. These 
metrics were calculated within the external, bladder and rectal contours 
of the pCT_deformed. 

In addition to the image quality metrics, the anatomical agreement 
between the sCT and input CBCT was evaluated. This method was based 
on organs-at-risk (OAR) and bone contours. OAR selected for evaluation 
were rectum and bladder. Contours were created by delineation of 
femoral joint, bladder and rectum. The observer-related variabilities in 
contouring were minimized with the use of an edge detection brush in 
Raystation V9.1 (RaySearch laboratories AB, Stockholm, Sweden). Extra 
attention was paid to the interface between prostate and bladder, where 
the contrast difference was sometimes too low for the edge detection 
tool to work reliably. In those cases the bladder contour was consistently 
delineated by one observer in all sCTs and on the corresponding CBCTs. 

For the bone evaluation, Dice Similarity Coefficient (DSC), Average 
Surface Distance (ASD) and 95th percentile Hausdorff distance (HD95) 
between bone contours on CBCT and sCT were calculated [22,23]. For 
OAR evaluation, OAR volume differences, HD95 and ASD were calcu
lated between contours on CBCT and sCT. ASD was calculated by 
averaging the minimum Euclidian distance between contour voxel of 
CBCT and sCT and the minimum Euclidian distance between contour 
voxel of sCT and CBCT. 

A Wilcoxon Signed-Rank (WSR) test was used to test whether the DL- 
models were statistically different. Prior to the WSR test, however, a 
Friedman test was used to determine whether the WSR test was allowed, 
which was necessary as more than two groups were compared. The 
Friedman test, which is a non-parametric alternative to a repeated 
measures ANOVA, was used with a significance level of p < 0.05 [24]. If 
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the Friedman test showed an overall significant difference, a WSR test 
was used to compare each pair of two DL-models mutually [25]. This 
way, the WSR test was used three times. Therefore, the significance level 
of the WSR test was corrected for multiple testing to p < 0.017. 

3. Results 

3.1. Visual inspection 

Fig. 1 shows typical examples of CBCT, sCT and CT images of two 
patients, showing that the image quality of the sCTs generated by the 
three different DL-models was improved compared to the CBCTs. Apart 

from the apparent image quality differences, Fig. 1 also demonstrated 
that the Dual-UNet resembled the pCT more in terms of anatomical 
features (shape and position), rather than the input CBCT. CycleGAN 
and Single-UNet, on the other hand, better preserved the anatomical 
features as present in the CBCT. For example, the bladder size was 
decreased significantly more by the Dual-UNet and therefore more 
comparable to the bladder size in the pCT_rigid (Fig. 1). The bladder 
volume difference for one patient is shown in more detail in Fig. 2. This 
example showed a smaller bladder size on the sCT generated by Dual- 
UNet than the bladder size of CBCT, which was 268 cm3 compared to 
125 cm3, respectively. 

Fig. 1. Examples of CBCT, sCT and CT images of two 
patients. Purple line is rectum contour, blue line is 
bladder contour and orange line is bone contour. For 
each patient, the first row shows from left to right: 
cone-beam CT and registered planning CT. The second 
row shows synthetic CTs generated by three different 
DL-models. The window width and window level of the 
shown CT images are 350 and 40 HU. The window 
width and window level of the shown CBCT images 
are 350 and − 230 HU. (For interpretation of the ref
erences to colour in this figure legend, the reader is 
referred to the web version of this article.)   

Y.J.M. de Hond et al.                                                                                                                                                                                                                          



Physics and Imaging in Radiation Oncology 25 (2023) 100416

4

3.2. CT value-based evaluation 

According to the MAE, PSNR and SSIM, Dual-UNet performed best in 
CT value-based evaluation between the different DL-models (Table 1 and 
Supplementary material A). The MAE, reported as median [range], was 
smallest in Dual-UNet compared to Single-UNet and CycleGAN, which 
was respectively 24 HU [range: 19–30 HU], 40 HU [range: 34–56 HU] 
and 41 HU [range: 37–46 HU]. Significant difference between Dual- 
UNet and Single-UNet were found in MAE within external (p = 0.01), 
bladder (p = 0.01) and rectum (p = 0.01). This was also observed be
tween Dual-UNet and CycleGAN. No significant difference was found 
between Single-UNet and Cyclegan. Significant difference was also 
observed in the SSIM Dual-UNet compared to the other two networks 
(Single-UNet and CycleGAN) (p = 0.01 and p = 0.01 respectively). 

3.3. Anatomical comparison of bones 

The median DSC in bone contours between CBCT and sCT, were 0.97 
[range: 0.96–0.97] for Dual-UNet, 0.97 [range: 0.97–0.98] for Single- 
UNet and 0.97 [range: 0.95–0.98] for CycleGAN (Fig. 3a). The median 
ASD was 0.5 mm [range: 0.5–0.9 mm] for Dual-UNet, 0.5 mm [range: 
0.4–0.6 mm] for Single-UNet and 0.5 mm [range: 0.4–0.8 mm] for 
GycleGAN. There was no significant difference in DSC and ASD found 
between the three DL models. 

3.4. Anatomical comparison of OAR 

In contrast to the anatomical comparison of the bones, significant 
differences between DL-models in the anatomical comparison of OAR 
were found. Absolute rectum volume differences were largest in Dual- 
UNet, then Single-UNet, and smallest in CycleGAN, with median 6.5 
cm3 [range: 1.4–98.9 cm3], 1.9 cm3 [range: 0.2–21.3 cm3] and 0.8 cm3 

[range: 0.1–2.8 cm3], respectively (Fig. 4a). This resulted in a significant 
difference between Dual-UNet and CycleGAN (p < 0.01). The absolute 
bladder volume differences between the DL-models were larger in Dual- 
UNet than Single-UNet and CycleGAN, respectively 67 cm3 [range: 
3–220 cm3], 6 cm3 [range: 1–70 cm3] and 6 cm3 [range: 0–13 cm3] 
(Fig. 4b). This resulted in a significant difference between Dual-UNet 
and CycleGAN (p < 0.01). 

The ASD of the rectum contour between CBCT and sCT was largest in 
Dual-UNet and small in Single-UNet and CycleGAN, respectively 3.0 mm 
[range: 1.9–7.7 mm], 0.6 mm [range: 0.45–0.87 mm] and 0.6 mm 
[range: 0.4–0.7 mm] (Fig. 5a). This resulted in a significant difference 
between Dual-UNet, Single-UNet (p = 0.01) and CycleGAN (p = 0.01). 
In the bladder contours, the ASD was largest in Dual-UNet and small in 
Single-UNet and CycleGAN, respectively 4.5 mm [range: 1.6–12.3 mm], 
0.7 mm [range: 0.4–1.2 mm] and 0.9 mm [range: 0.4–1.1 mm] (Fig. 5b). 
This resulted in a significant difference between Dual-UNet and Single- 
UNet (p = 0.01) or CycleGAN (p = 0.01). 

Fig. 2. A qualitative example of large anatomical differences between CBCT and sCT generated by Dual-UNet in transversal, sagittal and coronal view. Purple line is 
rectum contour, blue line is bladder contour and orange line is bone contour. This example shows a smaller bladder size of the sCT generated by Dual-UNet than the 
bladder size of CBCT, which was 268 cm3 compared to 125 cm3 respectively. The window width and window level of the shown CT images are 350 and 40 HU. The 
window width and window level of the shown CBCT images are 350 and − 230 HU. (For interpretation of the references to colour in this figure legend, the reader is 
referred to the web version of this article.) 

Table 1 
Image metrics calculated between sCT and pCT_deformed per DL-model (Median 
[range]). The best performance is indicated in bold.  

Contour DL-model Mean 
Absolute 
Error [HU] 

Peak Signal-to- 
Noise Ratio [dB] 

Structural 
Similarity Index 
Measure [-] 

External Dual-UNet 25 [19–30] 39.4 
[39.0–40.8] 

0.74 [0.68–0.79] 

Single- 
UNet 

40 [34–56] 36.4 
[35.0–37.33] 

0.65 [0.52–0.70] 

CycleGAN 41 [37–46] 37.3 [36.6–37.8] 0.67 [0.59–0.70] 
Bladder Dual-UNet 19 [13–29] 40 [39–45] – 

Single- 
UNet 

40 [30–66] 37 [34–39] – 

CycleGAN 37 [26–56] 38 [36–40] – 
Rectum Dual-UNet 18 [12–23] 41 [37–45] – 

Single- 
UNet 

50 [32–95] 36 [32–39] – 

CycleGAN 41 [27–55] 37 [33–40] –  
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4. Discussion 

In this study, the anatomical correctness of sCT scans generated from 

CBCT scans was quantitatively assessed for paired and unpaired DL- 
models on prostate cancer patients with varying bladder and rectum 
filling. Although Dual-UNet performed best in standard image quality 

Fig. 3. Comparison of bone contours of CBCT and sCT per DL-model. (a) Dice coefficient. (b) ASD in mm. Horizontal lines in boxes are medians, dots are outliers.  

Fig. 4. OAR absolute volume differences between CBCT and sCT in cm3 per DL-model. (a) Rectal absolute volume difference. (b) Bladder absolute volume difference. 
Horizontal lines in boxes are medians, dots are outliers. 

Fig. 5. ASD in mm between OAR contours of CBCT and sCT of different DL-Model Types. (a) Rectum contours. (b) Bladder contours. Horizontal lines in boxes are 
medians, dots are outliers. 
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measures, like MAE and SSIM, the preservation of CBCT anatomy was 
worst in Dual-UNet. This confirmed that Dual-UNet generated sCTs with 
the highest image quality upon visual inspection, in terms of contrast, 
noise and sharpness. However, by visual inspection it could also be 
observed that the anatomy of the CBCT was not adequately preserved in 
the sCTs generated by Dual-UNet. This emphasizes the importance of 
adding anatomy based evaluation of sCTs generated by DL-models. 

Three different DL-models were evaluated on sCT generation from 
CBCT images of prostate cancer patients: paired Dual-UNet, paired 
Single-UNet and unpaired CycleGAN. All three DL-models resulted in 
sCTs with a reduced amount of noise compared to the original CBCT 
scan. Compared to the model proposed in Chen et al. our Dual-UNet 
performed better in terms of MAE and PSNR [8]. For the CycleGAN 
model, our MAE was lower than the MAE reported by Kurz et al. and 
comparable to the MAE reported by Eckl et al. [11,26]. Dual-UNet 
performed best in the standard image metrics MAE, PSNR and SSIM 
(Table 1), however, CycleGAN and Single-UNet performed best in pre
serving anatomical features. The present finding that the best perfor
mance in SSIM did not correspond with the highest anatomical 
correctness is in agreement with the findings of Rossi et al. [18]. 

In the bone DSC and ASD comparison, no significant differences 
between the different DL-models were found. The ASD of the bone con
tours were smaller than found in segmentation studies [27,28]. Since the 
contours used in the present study are within the precision of DL-seg
mentation model ranges, the observed significant ASD differences be
tween the three different DL-models were due to DL-model differences in 
their capability to preserve of CBCT anatomy. 

Significant rectal volume differences were found between the 
different DL-model types. The rectal volume difference between contours 
on Dual-UNet and CBCT was around three times larger than the rectal 
volume difference between contours generated by manual delineation 
and DL-segmentation models on MRI and CT [29–31]. The rectal volume 
difference in Single-UNet and CycleGAN was, however, in the range of 
these DL-segmentation models [29–31]. The rectum volume difference in 
Dual-UNet was up to 99 cm3, in Single-UNet up to 4 cm3 and in Cycle
GAN up to 3 cm3. The rectal volume difference was depending on the 
CBCT and pCT anatomy difference, caused by difference in rectal filling 
between the pCT and daily CBCT. Even larger volume differences up to 
221 cm3 were found in the bladder, which led to a HD95 of 29 mm in 
Dual-UNet (Supplementary material B). The HD95 difference in Dual- 
UNet was around three times higher than in DL-segmentation studies 
[29,30,32]. This HD95 is a clinically relevant difference, since for 
example Planning Target Volume (PTV) margins of 5 mm are used in 
treatment planning. This emphasizes that the observed differences be
tween DL-models could have a clinically relevant impact on the esti
mated bladder volumes and position. 

To include OAR locations, the ASD was calculated. The ASD of the 
rectum and bladder contours of the sCTs generated by the Single-UNet 
and CycleGAN were within the range of DL-segmentation studies for 
male pelvic ASDs [27,30,33,34]. However, the Dual-UNet resulted in 
ASDs of four times the reported autocontouring ASD values. These ASDs 
between Dual-UNet and CBCT were in the range of clinically used PTV 
margins. OAR volume differences and ASD were larger in Dual-UNet 
when the CBCT and pCT anatomy difference was larger due to rectal 
and bladder filling. 

In further research, if auto-contouring on CBCT is improved, auto- 
contoured based ASD and volume comparison could even further 
improve the anatomical comparison of DL-models. With the use of auto- 
contouring, DL-models could be improved on anatomical preservation by 
adding the ASD and volume comparison to the loss functions of the DL- 
models. The influence on the OAR dose could be investigated, with 
respect to the organ boundary location in the sCTs, and therefore the 
location of OAR contours. 

In conclusion, although Dual-UNet performed best in standard image 
quality measures, the contour based anatomical feature comparison 
with the CBCT showed Dual-UNet performed worst on anatomical 

comparison. This emphasizes the importance of adding anatomy based 
evaluation of sCTs generated by DL-models. For applications in the pelvic 
area, where accurate deformable registration is not always guaranteed, a 
direct comparison of the anatomical structure with the input CBCT may 
provide a useful method to assess the clinical applicability of DL based 
sCT generation methods. 
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