190 research outputs found

    Receipt from Bowles & Roarke to Estate of Robert Goelet

    Get PDF
    https://digitalcommons.salve.edu/goelet-new-york/1062/thumbnail.jp

    Receipt from Bowles & Roarke to Peter McCormick

    Get PDF
    https://digitalcommons.salve.edu/goelet-new-york/1018/thumbnail.jp

    A Saint for Superior General

    Get PDF
    Former superior general William Slattery strove to imitate Christ in every aspect of his life and seemed to radiate holiness. Mary Basil Roarke offers specific illustrations of his many virtues, among which were simplicity, humility, meekness, mortification, and zeal. She recounts his interactions with the Daughters of Charity and their reactions to him. She also selects statements he wrote for The Echo of the Motherhouse, the Daughters of Charity’s worldwide periodical, on such topics as the Eucharist, Mary, the rosary, distractions in prayer, mental prayer, and holiness

    Towards a unified treatment of 3D display using partially coherent light

    Get PDF
    Thesis (S.M.)--Massachusetts Institute of Technology, School of Architecture and Planning, Program in Media Arts and Sciences, 2011.Cataloged from PDF version of thesis.Includes bibliographical references (p. 111-120).This thesis develops a novel method of decomposing a 3D phase space description of light into multiple partially coherent modes, and applies this decomposition to the creation of a more flexible 3D display format. Any type of light, whether it is completely coherent, partially coherent or incoherent, can be modeled either as a sum of coherent waves or as rays. A set of functions, known as phase space functions, provide an intuitive model for these waves or rays as they pass through a 3D volume to a display viewer's eyes. First, this thesis uses phase space functions to mathematically demonstrate the limitations of two popular 3D display setups: parallax barriers and coherent holograms. Second, this thesis develops a 3D image design algorithm based in phase space. The "mode-selection" algorithm can find an optimal holographic display setup to create any desired 3D image. It is based on an iterative algebraic-rank restriction process, and can be extended to model light with an arbitrary degree of partial coherence. Third, insights gained from partially coherent phase space representations lead to the suggestion of a new form of 3D display, implemented with multiple time-sequential diffracting screens. The mode-selection algorithm determines an optimal set of diffracting screens to display within the flicker-fusion rate of a viewer's eye. It is demonstrated both through simulation and experiment that this time-sequential display offers improved performance over a fixed holographic display, creating 3D images with increased intensity variation along depth. Finally, this thesis investigates the tradeoffs involved with multiplexing a holographic display over time with well-known strategies of multiplexing over space, illumination angle and wavelength. The examination of multiplexing tradeoffs is extended into the incoherent realm, where comparisons to ray-based 3D displays can hopefully offer a more unified summary of the limitations of controlling light within a volume.by Roarke Horstmeyer.S.M

    Guidestar-assisted wavefront-shaping methods for focusing light into biological tissue

    Get PDF
    In the field of biomedical optics, optical scattering has traditionally limited the range of imaging within tissue to a depth of one millimetre. A recently developed class of wavefront-shaping techniques now aims to overcome this limit and achieve diffraction-limited control of light beyond one centimetre. By manipulating the spatial profile of an optical field before it enters a scattering medium, it is possible to create a micrometre-scale focal spot deep within tissue. To successfully operate in vivo, these wavefront-shaping techniques typically require feedback from within the biological sample. This Review summarizes recently developed 'guidestar' mechanisms that provide feedback for intra-tissue focusing. Potential applications of guidestar-assisted focusing include optogenetic control over neurons, targeted photodynamic therapy and deep tissue imaging

    Solving ptychography with a convex relaxation

    Get PDF
    Ptychography is a powerful computational imaging technique that transforms a collection of low-resolution images into a high-resolution sample reconstruction. Unfortunately, algorithms that are currently used to solve this reconstruction problem lack stability, robustness, and theoretical guarantees. Recently, convex optimization algorithms have improved the accuracy and reliability of several related reconstruction efforts. This paper proposes a convex formulation of the ptychography problem. This formulation has no local minima, it can be solved using a wide range of algorithms, it can incorporate appropriate noise models, and it can include multiple a priori constraints. The paper considers a specific algorithm, based on low-rank factorization, whose runtime and memory usage are near-linear in the size of the output image. Experiments demonstrate that this approach offers a 25% lower background variance on average than alternating projections, the current standard algorithm for ptychographic reconstruction.Comment: 8 pages, 8 figure

    Wide-field, high-resolution Fourier ptychographic microscopy

    Get PDF
    We report an imaging method, termed Fourier ptychographic microscopy (FPM), which iteratively stitches together a number of variably illuminated, low-resolution intensity images in Fourier space to produce a wide-field, high-resolution complex sample image. By adopting a wavefront correction strategy, the FPM method can also correct for aberrations and digitally extend a microscope’s depth of focus beyond the physical limitations of its optics. As a demonstration, we built a microscope prototype with a resolution of 0.78 µm, a field of view of ∼120 mm^2 and a resolution-invariant depth of focus of 0.3 mm (characterized at 632 nm). Gigapixel colour images of histology slides verify successful FPM operation. The reported imaging procedure transforms the general challenge of high-throughput, high-resolution microscopy from one that is coupled to the physical limitations of the system’s optics to one that is solvable through computation
    • …
    corecore