6 research outputs found

    Anticancer Activity and Cisplatin Binding Ability of Bis-Quinoline and Bis-Isoquinoline Derived [Pd2L4]4+ Metallosupramolecular Cages

    Get PDF
    New bis-quinoline (Lq) and bis-isoquinoline-based (Liq) ligands have been synthesized, along with their respective homoleptic [Pd2(Lq or Liq)4]4+ cages (Cq and Ciq). The ligands and cages were characterized by 1H, 13C and diffusion ordered (DOSY) NMR spectroscopies, high resolution electrospray ionization mass spectrometry (HR-ESIMS) and in the case of the bis-quinoline cage, X-ray crystallography. The crystal structure of the Cq architecture showed that the [Pd2(Lq)4]4+ cage formed a twisted meso isomer where the [Pd(quinoline)4]2+ units at either end of the cage architecture adopt the opposite twists (left and right handed). Conversely, Density Functional Theory (DFT) calculations on the Ciq cage architecture indicated that a lantern shaped conformation, similar to what has been observed before for related [Pd2(Ltripy)4]4+ systems (where Ltripy = 2,6-bis(pyridin-3-ylethynyl)pyridine), was generated. The different cage conformations manifest different properties for the isomeric cages. The Ciq cage is able to bind, weakly in acetonitrile, the anticancer drug cisplatin whereas the Cq architecture shows no interaction with the guest under the same conditions. The kinetic robustness of the two cages in the presence of Cl− nucleophiles was also different. The Ciq cage was completely decomposed into free Liq and [Pd(Cl)4]2− within 1 h. However, the Cq cage was more long lived and was only fully decomposed after 7 h. The new ligands (Liq and Lq) and the Pd(II) cage architectures (Ciq and Cq) were assessed for their cytotoxic properties against two cancerous cell lines (A549 lung cancer and MDA-MB-231 breast cancer) and one non-cancerous cell line (HDFa skin cells). It was found that Lq and Cq were both reasonably cytotoxic (IC50S ≈ 0.5 μM) against A549, while Ciq was slightly less active (IC50 = 7.4 μM). Liq was not soluble enough to allow the IC50 to be determined against either of the two cancerous cell lines. However, none of the molecules showed any selectivity for the cancer cells, as they were all found to have similar cytotoxicities against HDFa skin cells (IC50 values ranged from 2.6 to 3.0 μM)

    Long-cavity [Pd2L4]4+ cages and designer 1,8-naphthalimide sulfonate guests: rich variation in affinity and differentiated binding stoichiometry

    Get PDF
    One of the most appealing features of [Pd2L4]4+ cages is their well-defined cavities, giving binding affinity for specific guests. If seeking to bind larger and more complex guests, an attractive strategy is to lengthen the ligand backbone and therefore the inter-palladium(II) distance and cavity length. In comparison to large hollow [PdnL2n]2n+ polyhedra, this approach retains a well-ordered cavity environment. We report here a novel ligand, 1,3-bis(4-(4-ethynylpyridine)-phenyl)-adamantane, that has a hydrophobic bis(phenyl)adamantane core and forms [Pd2L4]4+ cages with a large 19 Å inter-palladium(II) cavity length. This cage binds long designer anions: naphthalimide sulfonates at ≥15 Å in length, which consist of two distinct domains: a naphthalimide and a phenyl sulfonate. This binding derives from hydrogen bonding between the endohedral pyridyl protons of the cage and the phenyl sulfonate group, and π–hydrophobic interactions between the adamantane core and the naphthalimide unit. The strength of binding depends on the degree of electron deficiency of the naphthalimide, brought about by the nature of substituents on this moiety, with binding constants for monoanionic guests ranging from 400 to 1800 M−1. The host/guest stoichiometry was found to be 1 : 2, unless the guest possessed a second sulfonate group, and was small enough to fit end-to-end within the cavity, in which case the stoichiometry was 1 : 1, and resulted in a high binding constant (for DMSO solvent) of 6100 M−1. This work demonstrates the subtle interplay and potential between cages and guests that are both large and that both have distinct dual zones able to interact with each other, and offers a pathway to specific and tunable binding of large guests.The authors would like to thank the University of Canterbury, the Australian National University, Massey University Albany and the University of Otago for funding. DP, KP and PK would like to thank the MacDiarmid Institute for funding. DP would like to thank the Royal Society of New Zealand for a Rutherford Postdoctoral Fellowship, and the Australian Research Council for a DECRA Fellowship

    Exploiting the labile site in dinuclear [Pd2L2]n+ metallo-cycles: multi-step control over binding affinity without alteration of core host structure

    Get PDF
    While Nature often controls supramolecular processes through regulation giving multiple levels of activity, synthetic metallosupramolecular systems have generally been binary (e.g. on/off) when they have control over molecular recognition events, and have often relied upon drastic chemical transformations or complete disassembly to enforce this control. We report here a new low symmetry ligand with a bidentate and a monodentate site (L). In combination with Pd2+, this ligand forms a [2 + 2] metallo-macrocycle, [Pd2L2L′2]n+, where L′ is the monodentate ancillary ligand that occupies the fourth and final coordination site of the metal ions. This assembly is structurally simple, but displays nuanced, multi-step binding affinity toward a neutral diplatinate guest employed for proof-of-concept. This complexity is introduced through varying the identity of L′, which can either be solvent (DMSO) or the halides chloride, bromide or iodide. The identity of L′ alters the cationic charge of the complex (neutral DMSO versus monoanionic halides) or otherwise influences the electron deficiency of the binding site of the host through varied strength of halide-ligand intra-molecular hydrogen bonding. Cycling between these different complexes was demonstrated, except for L′ = chloride which is non-reversible. This system therefore is able to interact with a platinate guest with four different graduations of affinity in response to stimuli, while still retaining the same simple core cationic structure. In addition to multi-setting binding affinity, we believe this is the first example of the use of variable intramolecular hydrogen bonding strength in switchable ancillary ligands to alter the electronic character and hence the π-π recognition characteristics of a metallosupramolecular host.DP would like to thank the ARC for a DECRA Fellowship, and the Royal Society of New Zealand for a Rutherford Postdoctoral Fellowship. BH would like to gratefully acknowledge the MBIE Catalyst Fund for a PhD scholarship. RV would like to thank the University of Otago for a PhD scholarship. The authors would like to thank the Australia National University, the University of Canterbury, the University of Otago, and the MacDiarmid Institute for additional funding. The authors acknowledge the contribution of the NeSI high performance computing facilities to the results of this research. New Zealand’s national facilities are provided by the New Zealand eScience Infrastructure and funded jointly by NeSI’s collaborator institutions and through the Ministry of Business, Innovation & Employment’s Research Infrastructure program. https://www.nesi.org.nz

    Oxidatively Locked [Co2L3]6+ Cylinders Derived from Bis(bidentate) 2-Pyridyl-1,2,3-triazole “Click” Ligands: Synthesis, Stability, and Antimicrobial Studies

    No full text
    A small family of [Co2(Lpytrz)3]6+ cylinders was synthesised from bis(bidentate) 2-pyridyl-1,2,3-triazole “click” ligands (Lpytrz) through an “assembly-followed-by-oxidation” method. The cylinders were characterised using 1H, 13C, and DOSY NMR, IR, and UV-Vis spectroscopies, along with electrospray ionisation mass spectrometry (ESMS). Stability studies were conducted in dimethyl sulfoxide (DMSO) and D2O. In contrast to similar, previously studied, [Fe2(Lpytrz)3]4+ helicates the more kinetically inert [Co2(Lpytrz)3]6+ systems proved stable (over a period of days) when exposed to DMSO and were even more stable in D2O. The triply stranded [Co2(Lpytrz)3]6+ systems and the corresponding “free” ligands were tested for antimicrobial activity in vitro against both Gram-positive (Staphylococcus aureus) and Gram-negative (Escherichia coli) microorganisms. Agar-based disk diffusion and Mueller–Hinton broth micro-dilution assays showed that the [Co2(Lpytrz)3]6+ cylinders were not active against either strain of bacteria. It is presumed that a high charge of the [Co2(Lpytrz)3]6+ cylinders is preventing them from crossing the bacterial cell membranes, rendering the compounds biologically inactive
    corecore