339 research outputs found

    A new example of N=2 supersymmetric Landau-Ginzburg theories: the two-ring case

    Full text link
    The new example of N=2 supersymmetric Landau-Ginzburg theories is considered when the critical values of the superpotential w(x) form the regular two-ring configuration. It is shown that at the deformation, which does not change the form of this configuration, the vacuum state metric satisfies the equation of non-Abelian 2 x 2 Toda system.Comment: LaTeX, 13p

    The Q-operator and Functional Relations of the Eight-vertex Model at Root-of-unity η=2mKN\eta = \frac{2m K}{N} for odd N

    Full text link
    Following Baxter's method of producing Q_{72}-operator, we construct the Q-operator of the root-of-unity eight-vertex model for the crossing parameter η=2mKN\eta = \frac{2m K}{N} with odd NN where Q_{72} does not exist. We use this new Q-operator to study the functional relations in the Fabricius-McCoy comparison between the root-of-unity eight-vertex model and the superintegrable N-state chiral Potts model. By the compatibility of the constructed Q-operator with the structure of Baxter's eight-vertex (solid-on-solid) SOS model, we verify the set of functional relations of the root-of-unity eight-vertex model using the explicit form of the Q-operator and fusion weights of SOS model.Comment: Latex 28 page; Typos corrected, minor changes in presentation, References added and updated-Journal versio

    The Q-operator for Root-of-Unity Symmetry in Six Vertex Model

    Full text link
    We construct the explicit QQ-operator incorporated with the sl2sl_2-loop-algebra symmetry of the six-vertex model at roots of unity. The functional relations involving the QQ-operator, the six-vertex transfer matrix and fusion matrices are derived from the Bethe equation, parallel to the Onsager-algebra-symmetry discussion in the superintegrable NN-state chiral Potts model. We show that the whole set of functional equations is valid for the QQ-operator. Direct calculations in certain cases are also given here for clearer illustration about the nature of the QQ-operator in the symmetry study of root-of-unity six-vertex model from the functional-relation aspect.Comment: Latex 26 Pages; Typos and small errors corrected, Some explanations added for clearer presentation, References updated-Journal version with modified labelling of sections and formula

    On τ(2)\tau^{(2)}-model in Chiral Potts Model and Cyclic Representation of Quantum Group Uq(sl2)U_q(sl_2)

    Full text link
    We identify the precise relationship between the five-parameter τ(2)\tau^{(2)}-family in the NN-state chiral Potts model and XXZ chains with Uq(sl2)U_q (sl_2)-cyclic representation. By studying the Yang-Baxter relation of the six-vertex model, we discover an one-parameter family of LL-operators in terms of the quantum group Uq(sl2)U_q (sl_2). When NN is odd, the NN-state τ(2)\tau^{(2)}-model can be regarded as the XXZ chain of Uq(sl2)U_{\sf q} (sl_2) cyclic representations with qN=1{\sf q}^N=1. The symmetry algebra of the τ(2)\tau^{(2)}-model is described by the quantum affine algebra Uq(sl^2)U_{\sf q} (\hat{sl}_2) via the canonical representation. In general for an arbitrary NN, we show that the XXZ chain with a Uq(sl2)U_q (sl_2)-cyclic representation for q2N=1q^{2N}=1 is equivalent to two copies of the same NN-state τ(2)\tau^{(2)}-model.Comment: Latex 11 pages; Typos corrected, Minor changes for clearer presentation, References added and updated-Journal versio

    Fusion Operators in the Generalized τ(2)\tau^{(2)}-model and Root-of-unity Symmetry of the XXZ Spin Chain of Higher Spin

    Full text link
    We construct the fusion operators in the generalized τ(2)\tau^{(2)}-model using the fused LL-operators, and verify the fusion relations with the truncation identity. The algebraic Bethe ansatz discussion is conducted on two special classes of τ(2)\tau^{(2)} which include the superintegrable chiral Potts model. We then perform the parallel discussion on the XXZ spin chain at roots of unity, and demonstrate that the sl2sl_2-loop-algebra symmetry exists for the root-of-unity XXZ spin chain with a higher spin, where the evaluation parameters for the symmetry algebra are identified by the explicit Fabricius-McCoy current for the Bethe states. Parallels are also drawn to the comparison with the superintegrable chiral Potts model.Comment: Latex 33 Pages; Typos and errors corrected, New improved version by adding explanations for better presentation. Terminology in the content and the title refined. References added and updated-Journal versio

    Editorial review essay

    Get PDF

    Comment on the Generation Number in Orbifold Compactifications

    Full text link
    There has been some confusion concerning the number of (1,1)(1,1)-forms in orbifold compactifications of the heterotic string in numerous publications. In this note we point out the relevance of the underlying torus lattice on this number. We answer the question when different lattices mimic the same physics and when this is not the case. As a byproduct we classify all symmetric ZNZ_N-orbifolds with (2,2)(2,2) world sheet supersymmetry obtaining also some new ones.Comment: 28 pages, 9 figures not included, available in postscript at reques

    The TQ equation of the 8 vertex model for complex elliptic roots of unity

    Full text link
    We extend our studies of the TQ equation introduced by Baxter in his 1972 solution of the 8 vertex model with parameter η\eta given by 2Lη=2m1K+im2K2L\eta=2m_1K+im_2K' from m2=0m_2=0 to the more general case of complex η.\eta. We find that there are several different cases depending on the parity of m1m_1 and m2m_2.Comment: 30 pages, LATE

    A deformed analogue of Onsager's symmetry in the XXZ open spin chain

    Full text link
    The XXZ open spin chain with general integrable boundary conditions is shown to possess a q-deformed analogue of the Onsager's algebra as fundamental non-abelian symmetry which ensures the integrability of the model. This symmetry implies the existence of a finite set of independent mutually commuting nonlocal operators which form an abelian subalgebra. The transfer matrix and local conserved quantities, for instance the Hamiltonian, are expressed in terms of these nonlocal operators. It follows that Onsager's original approach of the planar Ising model can be extended to the XXZ open spin chain.Comment: 12 pages; LaTeX file with amssymb; v2: typos corrected, clarifications in the text; v3: minor changes in references, version to appear in JSTA

    Factorized finite-size Ising model spin matrix elements from Separation of Variables

    Full text link
    Using the Sklyanin-Kharchev-Lebedev method of Separation of Variables adapted to the cyclic Baxter--Bazhanov--Stroganov or τ(2)\tau^{(2)}-model, we derive factorized formulae for general finite-size Ising model spin matrix elements, proving a recent conjecture by Bugrij and Lisovyy
    corecore