190 research outputs found

    Can sleep be used as an indicator of overreaching and overtraining in athletes?

    Get PDF
    Heales, LJ ORCiD: 0000-0002-4510-3324; Lastella, AM ORCiD: 0000-0003-1793-3811; Sargent, C ORCiD: 0000-0001-5340-4701; Vincent, GE ORCiD: 0000-0002-7036-7823To achieve optimal athletic performance and competition readiness, it is crucial to balance the highest appropriate training stimulus with sufficient recovery. Excessive and/or progressive increases in training load are integral to improving athletic performance (Halson, 2014). However, increased training loads and/or inadequate recovery can result in maladaptation to training, and if continued, can lead to the development of overreaching/overtraining (Meeusen et al., 2013; Cadegiani and Kater, 2017). In terms of recovery, sleep is an essential component of an athlete’s recuperation due to its physiological and psychological restorative effects (Dinges et al., 1997; Pejovic et al., 2013). Sleep quantity and quality declines following augmented increases (+30%) in training load (Hausswirth et al., 2014), and poor sleep is a common complaint among overreached and/or overtrained athletes (Wall et al., 2003). Regardless of whether reduced sleep is a cause or effect of overreaching and/or overtraining, it is possible that measures of sleep could serve as an indicator of the presence of overreaching and/or overtraining. This opinion article will examine the current research underpinning the relationship between insufficient sleep and the development of overreaching/overtraining, describe the implications for practitioners (e.g., sport and exercise scientists, coaches), and identify areas for future research

    The effect of sleep restriction, with or without high-intensity interval exercise, on myofibrillar protein synthesis in healthy young men

    Get PDF
    © 2020 The Authors. The Journal of Physiology published by John Wiley & Sons Ltd on behalf of The Physiological Society. Key points: Sleep restriction has previously been associated with the loss of muscle mass in both human and animal models. The rate of myofibrillar protein synthesis (MyoPS) is a key variable in regulating skeletal muscle mass and can be increased by performing high-intensity interval exercise (HIIE), although the effect of sleep restriction on MyoPS is unknown. In the present study, we demonstrate that participants undergoing a sleep restriction protocol (five nights, with 4 h in bed each night) had lower rates of skeletal muscle MyoPS; however, rates of MyoPS were maintained at control levels by performing HIIE during this period. Our data suggest that the lower rates of MyoPS in the sleep restriction group may contribute to the detrimental effects of sleep loss on muscle mass and that HIIE may be used as an intervention to counteract these effects. Abstract: The present study aimed to investigate the effect of sleep restriction, with or without high-intensity interval exercise (HIIE), on the potential mechanisms underpinning previously-reported sleep-loss-induced reductions to muscle mass. Twenty-four healthy, young men underwent a protocol consisting of two nights of controlled baseline sleep and a five-night intervention period. Participants were allocated into one of three parallel groups, matched for age, (Formula presented.), body mass index and habitual sleep duration; a normal sleep (NS) group [8 h time in bed (TIB) each night], a sleep restriction (SR) group (4 h TIB each night), and a sleep restriction and exercise group (SR+EX, 4 h TIB each night, with three sessions of HIIE). Deuterium oxide was ingested prior to commencing the study and muscle biopsies obtained pre- and post-intervention were used to assess myofibrillar protein synthesis (MyoPS) and molecular markers of protein synthesis and degradation signalling pathways. MyoPS was lower in the SR group [fractional synthetic rate (% day–1), mean ± SD, 1.24 ± 0.21] compared to both the NS (1.53 ± 0.09) and SR+EX groups (1.61 ± 0.14) (P < 0.05). However, there were no changes in the purported regulators of protein synthesis (i.e. p-AKTser473 and p-mTORser2448) and degradation (i.e. Foxo1/3 mRNA and LC3 protein) in any group. These data suggest that MyoPS is acutely reduced by sleep restriction, although MyoPS can be maintained by performing HIIE. These findings may explain the sleep-loss-induced reductions in muscle mass previously reported and also highlight the potential therapeutic benefit of HIIE to maintain myofibrillar remodelling in this context

    The effect of caffeine on subsequent sleep: A systematic review and meta-analysis

    Get PDF
    The consumption of caffeine in response to insufficient sleep may impair the onset and maintenance of subsequent sleep. This systematic review and meta-analysis investigated the effect of caffeine on the characteristics of night-time sleep, with the intent to identify the time after which caffeine should not be consumed prior to bedtime. A systematic search of the literature was undertaken with 24 studies included in the analysis. Caffeine consumption reduced total sleep time by 45 min and sleep efficiency by 7%, with an increase in sleep onset latency of 9 min and wake after sleep onset of 12 min. Duration (+6.1 min) and proportion (+1.7%) of light sleep (N1) increased with caffeine intake and the duration (-11.4 min) and proportion (-1.4%) of deep sleep (N3 and N4) decreased with caffeine intake. To avoid reductions in total sleep time, coffee (107 mg per 250 mL) should be consumed at least 8.8 h prior to bedtime and a standard serve of pre-workout supplement (217.5 mg) should be consumed at least 13.2 h prior to bedtime. The results of the present study provide evidence-based guidance for the appropriate consumption of caffeine to mitigate the deleterious effects on sleep

    Exercise mitigates sleep-loss-induced changes in glucose tolerance, mitochondrial function, sarcoplasmic protein synthesis, and diurnal rhythms

    Get PDF
    Objective Sleep loss has emerged as a risk factor for the development of impaired glucose tolerance. The mechanisms underpinning this observation are unknown; however, both mitochondrial dysfunction and circadian misalignment have been proposed. Because exercise improves glucose tolerance and mitochondrial function, and alters circadian rhythms, we investigated whether exercise may counteract the effects induced by inadequate sleep. Methods To minimize between-group differences of baseline characteristics, 24 healthy young males were allocated into one of the three experimental groups: a Normal Sleep (NS) group (8 h time in bed (TIB) per night, for five nights), a Sleep Restriction (SR) group (4 h TIB per night, for five nights), and a Sleep Restriction and Exercise group (SR+EX) (4 h TIB per night, for five nights and three high-intensity interval exercise (HIIE) sessions). Glucose tolerance, mitochondrial respiratory function, sarcoplasmic protein synthesis (SarcPS), and diurnal measures of peripheral skin temperature were assessed pre- and post-intervention. Results We report that the SR group had reduced glucose tolerance post-intervention (mean change ± SD, P value, SR glucose AUC: 149 ± 115 A.U., P = 0.002), which was also associated with reductions in mitochondrial respiratory function (SR: -15.9 ± 12.4 pmol O2.s−1.mg−1, P = 0.001), a lower rate of SarcPS (FSR%/day SR: 1.11 ± 0.25%, P < 0.001), and reduced amplitude of diurnal rhythms. These effects were not observed when incorporating three sessions of HIIE during this period (SR+EX: glucose AUC 67 ± 57, P = 0.239, mitochondrial respiratory function: 0.6 ± 11.8 pmol O2.s−1.mg−1, P = 0.997, and SarcPS (FSR%/day): 1.77 ± 0.22%, P = 0.971). Conclusions A five-night period of sleep restriction leads to reductions in mitochondrial respiratory function, SarcPS, and amplitude of skin temperature diurnal rhythms, with a concurrent reduction in glucose tolerance. We provide novel data demonstrating that these same detrimental effects are not observed when HIIE is performed during the period of sleep restriction. These data therefore provide evidence in support of the use of HIIE as an intervention to mitigate the detrimental physiological effects of sleep loss

    Superior effect of forceful compared with standard traction mobilizations in hip disability?

    Get PDF
    The objective of this study was to compare the effectiveness of two compiled physiotherapy programs: one including forceful traction mobilizations, the other including traction with unknown force, in patients with hip disability according to ICF (the International Classification of Functioning, Disability and Health, 2001; WHO), using a block randomized, controlled trial with two parallel treatment groups in a regular private outpatient physiotherapy practice. In the experimental group (E; n = 10) and control group (C; n = 9), the mean (±SD) age for all participants was 59 ± 12 years. They were recruited from outpatient physiotherapy clinics, had persistent pain located at the hip joint for >8 weeks and hip hypomobility. Both groups received exercise, information and manual traction mobilization. In E, the traction force was progressed to 800 N, whereas in C it was unknown. Major outcome measure was the median total change score ≥20 points or ≥50% of the disease- and joint-specific Hip disability and Osteoarthritis Outcome Score (HOOS), compiled of Pain, Stiffness, Function and Hip-related quality of life (ranging 0–100). The mean (range) treatments received were 13 (7–16) over 5–12 weeks and 20 (18–24) over 12 weeks for E and C, respectively. The experimental group showed superior clinical post-treatment effect on HOOS (≥20 points), in six of 10 participants compared with none of nine in the control group (p = 0.011). The effect size was 1.1. The results suggest that a compiled physiotherapy program including forceful traction mobilizations are short-term effective in reducing self-rated hip disability in primary healthcare. The long-term effect is to be documented

    A randomized comparative study of patients undergoing myocardial revascularization with or without cardiopulmonary bypass surgery: The MASS III Trial

    Get PDF
    The MASS III Trial is a large project from a single institution, The Heart Institute of the University of Sao Paulo, Brazil (InCor), enrolling patients with coronary artery disease and preserved ventricular function. The aim of the MASS III Trial is to compare medical effectiveness, cerebral injury, quality of life, and the cost-effectiveness of coronary surgery with and without of cardiopulmonary bypass in patients with multivessel coronary disease referred for both strategies. The primary endpoint should be a composite of cardiovascular mortality, cerebrovascular accident, nonfatal myocardial infarction, and refractory angina requiring revascularization. The secondary end points in this trial include noncardiac mortality, presence and severity of angina, quality of life based on the SF-36 Questionnaire, and cost-effectiveness at discharge and at 5-year follow-up. In this scenario, we will analyze the cost of the initial procedure, hospital length of stay, resource utilization, repeat hospitalization, and repeat revascularization events during the follow-up. Exercise capacity will be assessed at 6-months, 12-months, and the end of follow-up. A neurocognitive evaluation will be assessed in a subset of subjects using the Brain Resource Center computerized neurocognitive battery. Furthermore, magnetic resonance imaging will be made to detect any cerebral injury before and after procedures in patients who undergo coronary artery surgery with and without cardiopulmonary bypass

    Functional characterisation of the TSC1–TSC2 complex to assess multiple TSC2 variants identified in single families affected by tuberous sclerosis complex

    Get PDF
    BACKGROUND: Tuberous sclerosis complex (TSC) is an autosomal dominant disorder characterised by seizures, mental retardation and the development of hamartomas in a variety of organs and tissues. The disease is caused by mutations in either the TSC1 gene on chromosome 9q34, or the TSC2 gene on chromosome 16p13.3. The TSC1 and TSC2 gene products, TSC1 and TSC2, interact to form a protein complex that inhibits signal transduction to the downstream effectors of the mammalian target of rapamycin (mTOR). METHODS: We have used a combination of different assays to characterise the effects of a number of pathogenic TSC2 amino acid substitutions on TSC1-TSC2 complex formation and mTOR signalling. RESULTS: We used these assays to compare the effects of 9 different TSC2 variants (S132C, F143L, A196T, C244R, Y598H, I820del, T993M, L1511H and R1772C) identified in individuals with symptoms of TSC from 4 different families. In each case we were able to identify the pathogenic mutation. CONCLUSION: Functional characterisation of TSC2 variants can help identify pathogenic changes in individuals with TSC, and assist in the diagnosis and genetic counselling of the index cases and/or other family members

    Developing an objective indicator of fatigue: An alternative mobile version of the Psychomotor Vigilance Task (m-PVT)

    Get PDF
    Approximately 20% of the working population report symptoms of feeling fatigued at work. The aim of the study was to investigate whether an alternative mobile version of the ‘gold standard’ Psychomotor Vigilance Task (PVT) could be used to provide an objective indicator of fatigue in staff working in applied safety critical settings such as train driving, hospital staffs, emergency services, law enforcements, etc., using different mobile devices. 26 participants mean age 20 years completed a 25-min reaction time study using an alternative mobile version of the Psychomotor Vigilance Task (m-PVT) that was implemented on either an Apple iPhone 6s Plus or a Samsung Galaxy Tab 4. Participants attended two sessions: a morning and an afternoon session held on two consecutive days counterbalanced. It was found that the iPhone 6s Plus generated both mean speed responses (1/RTs) and mean reaction times (RTs) that were comparable to those observed in the literature while the Galaxy Tab 4 generated significantly lower 1/RTs and slower RTs than those found with the iPhone 6s Plus. Furthermore, it was also found that the iPhone 6s Plus was sensitive enough to detect lower mean speed of responses (1/RTs) and significantly slower mean reaction times (RTs) after 10-min on the m-PVT. In contrast, it was also found that the Galaxy Tab 4 generated mean number of lapses that were significant after 5-min on the m-PVT. These findings seem to indicate that the m-PVT could be used to provide an objective indicator of fatigue in staff working in applied safety critical settings such as train driving, hospital staffs, emergency services, law enforcements, etc

    Perceptual Learning in the Absence of Task or Stimulus Specificity

    Get PDF
    Performance on most sensory tasks improves with practice. When making particularly challenging sensory judgments, perceptual improvements in performance are tightly coupled to the trained task and stimulus configuration. The form of this specificity is believed to provide a strong indication of which neurons are solving the task or encoding the learned stimulus. Here we systematically decouple task- and stimulus-mediated components of trained improvements in perceptual performance and show that neither provides an adequate description of the learning process. Twenty-four human subjects trained on a unique combination of task (three-element alignment or bisection) and stimulus configuration (vertical or horizontal orientation). Before and after training, we measured subjects' performance on all four task-configuration combinations. What we demonstrate for the first time is that learning does actually transfer across both task and configuration provided there is a common spatial axis to the judgment. The critical factor underlying the transfer of learning effects is not the task or stimulus arrangements themselves, but rather the recruitment of commons sets of neurons most informative for making each perceptual judgment
    corecore